残余物
计算机科学
卷积神经网络
公制(单位)
领域(数学分析)
核(代数)
可分离空间
人工智能
支持向量机
算法
机器学习
工程类
数学
运营管理
组合数学
数学分析
作者
Chengying Zhao,Yuxiong Li,Shangjie Li,Yuxiong Li,Liangshi Sun
标识
DOI:10.1016/j.isatra.2023.11.043
摘要
In order to realize the remaining useful life (RUL) prediction of mechanical equipment under different operating conditions, a domain adaption residual separable convolutional neural network (DRSCN) model is proposed in this paper. In the DRSCN model, instead of the traditional convolutional layer, a residual separable convolutional module is developed to improve the feature extraction ability of the model. Moreover, a multi-kernel maximum mean discrepancy metric function and an adversarial learning mechanism are embedded in the DRSCN model to enhance its ability to resist domain shifts, thus improving the cross-domain RUL prediction accuracy of the model. The effectiveness of the DRSCN model is verified on an aircraft engine dataset. The experimental results show that the proposed model can realize high-accuracy RUL prediction.
科研通智能强力驱动
Strongly Powered by AbleSci AI