Molecular Characterization and Establishment of a Prognostic Model Based on Primary Immunodeficiency Features in Association with RNA Modifications in Triple-Negative Breast Cancer

乳腺癌 三阴性乳腺癌 肿瘤科 列线图 免疫系统 癌症 计算生物学 医学 生物信息学 生物 内科学 免疫学
作者
Hongzhuo Xia,Xiaodong Xu,Yuxuan Guo,Xiyun Deng,Yian Wang,Shujun Fu
出处
期刊:Genes [MDPI AG]
卷期号:14 (12): 2172-2172
标识
DOI:10.3390/genes14122172
摘要

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Although immunotherapy is effective for some patients, most find it difficult to benefit from it. This study aims to explore the impact of specific immune pathways and their regulated molecular mechanisms in TNBC. The gene expression data of breast cancer patients were obtained from the TCGA and METABRIC databases. Gene set variation analysis (GSVA) revealed specific upregulation or abnormal expression of immunodeficiency pathways in TNBC patients. Multi-omics data showed significant differential expression of Primary Immunodeficiency Genes (PIDGs) in TNBC patients, who are prone to genomic-level variations. Consensus clustering was used in two datasets to classify patients into two distinct molecular subtypes based on PIDGs expression patterns, with each displaying different biological features and immune landscapes. To further explore the prognostic characteristics of PIDGs-regulated molecules, we constructed a four-gene prognostic PIDG score model and a nomogram using least absolute shrinkage and selection operator (LASSO) regression analysis in combination with clinicopathological parameters. The PIDG score was closely associated with the immune therapy and drug sensitivity of TNBC patients, providing potential guidance for clinical treatment. Particularly noteworthy is the close association of this scoring with RNA modifications; patients with different scores also exhibited different mutation landscapes. This study offers new insights for the clinical treatment of TNBC and for identifying novel prognostic markers and therapeutic targets in TNBC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助飞天小女警采纳,获得10
1秒前
2秒前
刘晓龙发布了新的文献求助10
4秒前
华仔应助郑夏岚采纳,获得10
4秒前
4秒前
6秒前
研妍发布了新的文献求助10
7秒前
sham发布了新的文献求助10
8秒前
10秒前
顾矜应助TXZ06采纳,获得200
10秒前
11秒前
绿色催化发布了新的文献求助10
11秒前
火山完成签到,获得积分10
12秒前
南鸢完成签到 ,获得积分10
13秒前
大模型应助Lin采纳,获得10
15秒前
sham完成签到,获得积分10
15秒前
刘晓龙完成签到,获得积分10
16秒前
16秒前
17应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
一一应助科研通管家采纳,获得10
16秒前
郑夏岚发布了新的文献求助10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
元谷雪应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得30
16秒前
烟花应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
17秒前
刘彤完成签到,获得积分10
17秒前
17应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
王大炮完成签到 ,获得积分10
17秒前
17秒前
元谷雪应助科研通管家采纳,获得10
17秒前
17应助科研通管家采纳,获得10
17秒前
oyfff完成签到 ,获得积分10
17秒前
香蕉觅云应助LOFATIN采纳,获得10
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227991
求助须知:如何正确求助?哪些是违规求助? 2875925
关于积分的说明 8193014
捐赠科研通 2543101
什么是DOI,文献DOI怎么找? 1373445
科研通“疑难数据库(出版商)”最低求助积分说明 646756
邀请新用户注册赠送积分活动 621243