Cross-Modal Retrieval and Semantic Refinement for Remote Sensing Image Captioning

计算机科学 隐藏字幕 情报检索 情态动词 人工智能 语义映射 过程(计算) 自然语言处理 图像(数学) 操作系统 化学 高分子化学
作者
Zhengxin Li,Wenzhe Zhao,Xiaomeng Du,Guangyao Zhou,Songlin Zhang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (1): 196-196
标识
DOI:10.3390/rs16010196
摘要

Two-stage remote sensing image captioning (RSIC) methods have achieved promising results by incorporating additional pre-trained remote sensing tasks to extract supplementary information and improve caption quality. However, these methods face limitations in semantic comprehension, as pre-trained detectors/classifiers are constrained by predefined labels, leading to an oversight of the intricate and diverse details present in remote sensing images (RSIs). Additionally, the handling of auxiliary remote sensing tasks separately can introduce challenges in ensuring seamless integration and alignment with the captioning process. To address these problems, we propose a novel cross-modal retrieval and semantic refinement (CRSR) RSIC method. Specifically, we employ a cross-modal retrieval model to retrieve relevant sentences of each image. The words in these retrieved sentences are then considered as primary semantic information, providing valuable supplementary information for the captioning process. To further enhance the quality of the captions, we introduce a semantic refinement module that refines the primary semantic information, which helps to filter out misleading information and emphasize visually salient semantic information. A Transformer Mapper network is introduced to expand the representation of image features beyond the retrieved supplementary information with learnable queries. Both the refined semantic tokens and visual features are integrated and fed into a cross-modal decoder for caption generation. Through extensive experiments, we demonstrate the superiority of our CRSR method over existing state-of-the-art approaches on the RSICD, the UCM-Captions, and the Sydney-Captions datasets
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
kunkun小王完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
李小明完成签到,获得积分10
2秒前
ding应助Southluuu采纳,获得10
4秒前
AuroraBot发布了新的文献求助30
5秒前
5秒前
drunk发布了新的文献求助10
5秒前
250发布了新的文献求助10
5秒前
小二郎应助谢谢谢采纳,获得10
6秒前
维生素完成签到 ,获得积分10
7秒前
7秒前
8秒前
江峰应助聪明忆梅采纳,获得10
8秒前
大个应助务实的手套采纳,获得10
8秒前
9秒前
9秒前
9秒前
精明向秋发布了新的文献求助10
11秒前
丰富又槐完成签到 ,获得积分10
11秒前
平淡夜柳完成签到,获得积分10
11秒前
12秒前
嘉嘉发布了新的文献求助10
12秒前
13秒前
djfish发布了新的文献求助10
13秒前
大猪猪完成签到,获得积分10
13秒前
alex完成签到,获得积分10
13秒前
CCYY完成签到 ,获得积分10
14秒前
香蕉半邪完成签到,获得积分10
14秒前
害怕的涔完成签到 ,获得积分10
15秒前
zyp发布了新的文献求助10
17秒前
乌漆嘛黑完成签到,获得积分20
18秒前
HF发布了新的文献求助10
18秒前
Lucas应助超级的鞅采纳,获得10
19秒前
drunk完成签到,获得积分10
19秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441735
求助须知:如何正确求助?哪些是违规求助? 3038293
关于积分的说明 8971453
捐赠科研通 2726658
什么是DOI,文献DOI怎么找? 1495529
科研通“疑难数据库(出版商)”最低求助积分说明 691221
邀请新用户注册赠送积分活动 688269