A Feature Extraction Approach Over Workpiece Point Clouds for Robotic Welding

焊接 人工智能 稳健性(进化) 点云 机器人焊接 计算机视觉 机器人 计算机科学 特征提取 机器视觉 运动规划 聚类分析 边缘检测 图像处理 工程制图 工程类 机械工程 图像(数学) 化学 生物化学 基因
作者
Yuankai Zhang,Yusen Geng,Xincheng Tian,Fuquan Zheng,Yong Jiang,Min Lai
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:3
标识
DOI:10.1109/tase.2023.3345868
摘要

The programming of welding trajectories hinders the development of welding robots. With the development of machine vision, the welding path planning based on 3D vision can eliminate the teaching and programming work of the robot. However, the current weld extraction research relies on the geometric information of the workpiece, resulting in the low generality and robustness of the existing methods. The edge and corner features of the point cloud are the basis for extracting welds. Therefore, in view of the above problems, this paper proposes a method for edge and corner extraction of workpieces applied to 3D vision welding. First, the LOBB feature descriptor is proposed to build a feature space for the workpiece point cloud. Then, to enhance the robustness of feature clustering, nonlinear activation is performed on the feature description. Finally, a hierarchical clustering method based on K-means is designed to achieve the extraction of crease points, boundary points, and corner points. Experiments show that the method in this paper can not only extract the edges of various workpieces completely and with low noise, but also can identify corners efficiently, which is overall better than the existing methods. Note to Practitioners —Welding trajectory programming has been a bottleneck in the development of welding robots. However, advancements in machine vision have opened up new possibilities for welding path planning using 3D vision, which can eliminate the need for manual teaching and programming of robots. Unfortunately, existing methods for weld extraction from point clouds rely heavily on geometric information, resulting in limited applicability and robustness. To address these challenges, this paper proposes a novel method for extracting edge and corner features from workpieces using 3D vision in welding applications. The key contribution is the introduction of the LOBB feature descriptor, which creates a feature space for the workpiece’s point cloud. By applying nonlinear activation to the feature description, the robustness of feature clustering is enhanced. Additionally, a hierarchical clustering method based on K-means is designed to extract crease points, boundary points, and corner points. Experimental results demonstrate that the proposed method can effectively extract edges from various workpieces with minimal noise and efficiently identify corners. Overall, the method outperforms existing approaches in terms of completeness and accuracy of edge extraction. This advancement holds significant potential for practitioners in the field of welding robotics, as it reduces the programming complexity and improves the reliability of welding robots in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
矮小的聪展完成签到,获得积分10
刚刚
factor完成签到,获得积分10
刚刚
Hello应助李来仪采纳,获得10
1秒前
SEV发布了新的文献求助10
1秒前
1秒前
1秒前
坚强亦丝应助隐形机器猫采纳,获得10
2秒前
小马甲应助SCI采纳,获得10
3秒前
老疯智发布了新的文献求助10
3秒前
sweetbearm应助通~采纳,获得10
3秒前
神凰完成签到,获得积分10
3秒前
Z小姐发布了新的文献求助10
4秒前
NexusExplorer应助白泽采纳,获得10
4秒前
5秒前
5秒前
火星上妙梦完成签到 ,获得积分10
5秒前
赘婿应助mayungui采纳,获得10
5秒前
贾不可发布了新的文献求助10
6秒前
英俊梦槐发布了新的文献求助30
6秒前
Xu完成签到,获得积分10
7秒前
7秒前
秀丽千山完成签到,获得积分10
7秒前
8秒前
9秒前
哈哈哈哈完成签到,获得积分10
9秒前
沧海泪发布了新的文献求助10
10秒前
小胡先森应助凤凰山采纳,获得10
10秒前
一一完成签到,获得积分10
10秒前
惠惠发布了新的文献求助10
10秒前
shotgod完成签到,获得积分20
11秒前
科研通AI5应助蕾子采纳,获得10
11秒前
happy杨完成签到 ,获得积分10
11秒前
lichaoyes发布了新的文献求助10
11秒前
11秒前
Owen应助通~采纳,获得10
11秒前
封闭货车发布了新的文献求助10
12秒前
12秒前
www发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794