A Feature Extraction Approach Over Workpiece Point Clouds for Robotic Welding

焊接 人工智能 稳健性(进化) 点云 机器人焊接 计算机视觉 机器人 计算机科学 特征提取 机器视觉 运动规划 聚类分析 边缘检测 图像处理 工程制图 工程类 机械工程 图像(数学) 化学 生物化学 基因
作者
Yuankai Zhang,Yusen Geng,Xincheng Tian,Fuquan Zheng,Yong Jiang,Min Lai
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10 被引量:1
标识
DOI:10.1109/tase.2023.3345868
摘要

The programming of welding trajectories hinders the development of welding robots. With the development of machine vision, the welding path planning based on 3D vision can eliminate the teaching and programming work of the robot. However, the current weld extraction research relies on the geometric information of the workpiece, resulting in the low generality and robustness of the existing methods. The edge and corner features of the point cloud are the basis for extracting welds. Therefore, in view of the above problems, this paper proposes a method for edge and corner extraction of workpieces applied to 3D vision welding. First, the LOBB feature descriptor is proposed to build a feature space for the workpiece point cloud. Then, to enhance the robustness of feature clustering, nonlinear activation is performed on the feature description. Finally, a hierarchical clustering method based on K-means is designed to achieve the extraction of crease points, boundary points, and corner points. Experiments show that the method in this paper can not only extract the edges of various workpieces completely and with low noise, but also can identify corners efficiently, which is overall better than the existing methods. Note to Practitioners —Welding trajectory programming has been a bottleneck in the development of welding robots. However, advancements in machine vision have opened up new possibilities for welding path planning using 3D vision, which can eliminate the need for manual teaching and programming of robots. Unfortunately, existing methods for weld extraction from point clouds rely heavily on geometric information, resulting in limited applicability and robustness. To address these challenges, this paper proposes a novel method for extracting edge and corner features from workpieces using 3D vision in welding applications. The key contribution is the introduction of the LOBB feature descriptor, which creates a feature space for the workpiece’s point cloud. By applying nonlinear activation to the feature description, the robustness of feature clustering is enhanced. Additionally, a hierarchical clustering method based on K-means is designed to extract crease points, boundary points, and corner points. Experimental results demonstrate that the proposed method can effectively extract edges from various workpieces with minimal noise and efficiently identify corners. Overall, the method outperforms existing approaches in terms of completeness and accuracy of edge extraction. This advancement holds significant potential for practitioners in the field of welding robotics, as it reduces the programming complexity and improves the reliability of welding robots in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辣目童子发布了新的文献求助10
1秒前
田様应助狐狐采纳,获得10
1秒前
充电宝应助xh采纳,获得10
1秒前
华仔应助谭显芝采纳,获得10
1秒前
1秒前
2秒前
ardejiang发布了新的文献求助10
2秒前
6秒前
坦率的四娘完成签到,获得积分10
6秒前
完美世界应助normalgai采纳,获得30
7秒前
栗子发布了新的文献求助10
9秒前
11秒前
科研通AI2S应助Ouyang采纳,获得20
12秒前
余鱼鱼完成签到,获得积分10
13秒前
123完成签到,获得积分10
15秒前
Andrew完成签到,获得积分10
15秒前
chengs完成签到,获得积分10
15秒前
16秒前
桂馥兰馨完成签到 ,获得积分10
18秒前
Andrew发布了新的文献求助30
18秒前
20秒前
777hhh完成签到,获得积分20
23秒前
xj0806完成签到,获得积分10
25秒前
26秒前
楚小儿完成签到 ,获得积分10
27秒前
29秒前
30秒前
dropwater完成签到,获得积分10
30秒前
30秒前
31秒前
研友_nqa7On发布了新的文献求助10
31秒前
贪玩小小完成签到,获得积分10
32秒前
34秒前
谭显芝发布了新的文献求助10
34秒前
35秒前
36秒前
genesquared完成签到,获得积分10
37秒前
万能图书馆应助wyk_19920816采纳,获得10
37秒前
NexusExplorer应助kk采纳,获得10
37秒前
上官若男应助缥缈一德采纳,获得10
40秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157384
求助须知:如何正确求助?哪些是违规求助? 2808832
关于积分的说明 7878535
捐赠科研通 2467168
什么是DOI,文献DOI怎么找? 1313255
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919