DSST: A dual student model guided student–teacher framework for semi-supervised medical image segmentation

对偶(语法数字) 计算机科学 分割 图像(数学) 图像分割 计算机视觉 人工智能 双重目的 数学教育 心理学 机械工程 文学类 工程类 艺术
作者
Boliang Li,Yan Wang,Yaming Xu,Chen Wu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:90: 105890-105890 被引量:7
标识
DOI:10.1016/j.bspc.2023.105890
摘要

Numerous semi-supervised learning methods are emerging in medical image segmentation to reduce the dependency of deep learning models on pixel-level annotation data. Consistency regularization methods based on the Student–Teacher structure have achieved brilliant results in this domain. However, the current structures are unable to resolve the tight weight coupling satisfactorily between the teacher and student model, which leads to a decrease in the segmentation performance. In this paper, we propose a novel and practical semi-supervised learning framework, Dual-Student-Single-Teacher (DSST), to alleviate this problem. Particularly, the DSST framework consists of three segmentation models with the identical structure but different initial parameters, one serves as the teacher model and others as the student models, which employs an alternating manner to update the teacher model parameters. For the DSST framework, we present different supervised modes to sufficiently explore the enhancement of consistency regularization for model segmentation performance. Furthermore, we also introduce abundant and efficient input and feature perturbations for the proposed method. Finally, we evaluate our framework in three public medical image segmentation tasks, including Pancreas-CT, LA dataset, and cardiac segmentation on the ACDC dataset. Extensive experiments demonstrate that, compared with eight other superior semi-supervised methods, the DSST method obtains state-of-the-art segmentation performance and is an effective and generalizable framework. Code is available at https://github.com/LBL0704/DSST.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊啊啊啊完成签到,获得积分10
刚刚
刚刚
星辰大海应助cindy采纳,获得10
1秒前
hkhk完成签到,获得积分10
1秒前
李振博完成签到 ,获得积分10
1秒前
含蓄的小熊猫完成签到 ,获得积分10
1秒前
橙猫猫发布了新的文献求助10
2秒前
lwl完成签到,获得积分10
2秒前
一点点完成签到,获得积分10
2秒前
slin_sjtu完成签到,获得积分10
2秒前
pluto应助杜琛采纳,获得10
3秒前
光亮夏兰完成签到,获得积分10
3秒前
家伟完成签到,获得积分10
3秒前
星辰大海应助梓榆采纳,获得10
3秒前
WJ1989完成签到,获得积分10
4秒前
lisiyu发布了新的文献求助10
4秒前
Denny完成签到,获得积分10
4秒前
牛马小白完成签到,获得积分10
4秒前
ardejiang发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
W66完成签到,获得积分10
6秒前
思源应助chenchen采纳,获得10
6秒前
sunidea完成签到,获得积分10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
7秒前
CUREME完成签到,获得积分10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得30
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
不爱学习的小画家完成签到,获得积分10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
8秒前
cx完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613905
求助须知:如何正确求助?哪些是违规求助? 4018314
关于积分的说明 12438103
捐赠科研通 3701040
什么是DOI,文献DOI怎么找? 2041059
邀请新用户注册赠送积分活动 1073751
科研通“疑难数据库(出版商)”最低求助积分说明 957425