A novel cascaded multi-task method for crop prescription recommendation based on electronic medical record

计算机科学 药方 任务(项目管理) 人工智能 机器学习 数据挖掘 医学 工程类 系统工程 药理学
作者
Chang Xu,Lei Zhao,Haojie Wen,Yiding Zhang,Lingxian Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108790-108790 被引量:7
标识
DOI:10.1016/j.compag.2024.108790
摘要

Research on diagnosis of crop diseases and pests becomes a hot topic of the application of artificial intelligence technology in smart agriculture. Plant electronic medical records (PEMRs) formed by Beijing Plant Clinic provides a new idea for the diagnosis and prevention of crop diseases and pests. PEMRs are stored in the form of heterogeneous data, containing a wealth of plant information, disease and pest information, and environmental information. Therefore, it is urgent to mine the information in PEMRs and employ it to assist in intelligent prescription recommendation. This paper divides prescription recommendation into two sub-tasks, diagnosis and medication, and transforms this problem into a recommendation problem based on multi-task learning, with the goal of establishing a single model to realize learning multi-task simultaneously. Firstly, the correlation analysis of tasks and features is carried out using methods such as knowledge graph. Further, according to the sequential dependency between tasks, a novel cascaded multi-task crop prescription recommendation method based on Shared-Bottom and MMoE (Shared-MMoE) model is proposed, and each task is optimized by gating network. A PEMRs dataset containing 8 diseases, 9 pests and 32 medicines was constructed for model verification. Compared with the baseline model, the experiments showed that Shared-MMoE could significantly improve the quality and accuracy of prescription recommendation. The AUC of diagnosis task and medication task reached 96.33% and 95.36%, respectively. In conclusion, our study preliminarily explored the potential application of artificial intelligence in the research of crop diseases and pests based on PEMRs and multi-task learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
昭昭如愿完成签到,获得积分20
刚刚
1秒前
luluzheng应助PDIF-CN2采纳,获得10
1秒前
火柴two发布了新的文献求助10
1秒前
2秒前
初夏的百褶裙完成签到,获得积分10
2秒前
cruel发布了新的文献求助10
2秒前
2秒前
ppat5012发布了新的文献求助10
2秒前
pengliao完成签到,获得积分10
2秒前
魏士博发布了新的文献求助10
2秒前
田所浩二完成签到 ,获得积分10
3秒前
4秒前
华仔应助zhdan采纳,获得10
4秒前
ghhhn完成签到,获得积分10
4秒前
6秒前
皮皮怪完成签到,获得积分10
6秒前
6秒前
FIB菜狗发布了新的文献求助10
6秒前
火柴two完成签到,获得积分10
6秒前
旺旺发布了新的文献求助10
7秒前
共享精神应助奋斗的秋珊采纳,获得10
7秒前
7秒前
ICBC完成签到 ,获得积分10
7秒前
连夜雪完成签到,获得积分10
7秒前
小蘑菇应助smjjs采纳,获得20
7秒前
天天快乐应助困困小馒头采纳,获得10
7秒前
俭朴尔白发布了新的文献求助30
7秒前
licheng完成签到,获得积分10
7秒前
Owen应助疯狂的洋葱采纳,获得30
8秒前
王通发布了新的文献求助10
8秒前
8秒前
静_静完成签到 ,获得积分10
8秒前
8秒前
二哈发布了新的文献求助10
9秒前
Mikecheng完成签到,获得积分10
9秒前
9秒前
隐形曼青应助巴旦木采纳,获得10
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444