A novel cascaded multi-task method for crop prescription recommendation based on electronic medical record

计算机科学 药方 任务(项目管理) 人工智能 机器学习 数据挖掘 医学 工程类 系统工程 药理学
作者
Chang Xu,Lei Zhao,Haojie Wen,Yiding Zhang,Lingxian Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108790-108790
标识
DOI:10.1016/j.compag.2024.108790
摘要

Research on diagnosis of crop diseases and pests becomes a hot topic of the application of artificial intelligence technology in smart agriculture. Plant electronic medical records (PEMRs) formed by Beijing Plant Clinic provides a new idea for the diagnosis and prevention of crop diseases and pests. PEMRs are stored in the form of heterogeneous data, containing a wealth of plant information, disease and pest information, and environmental information. Therefore, it is urgent to mine the information in PEMRs and employ it to assist in intelligent prescription recommendation. This paper divides prescription recommendation into two sub-tasks, diagnosis and medication, and transforms this problem into a recommendation problem based on multi-task learning, with the goal of establishing a single model to realize learning multi-task simultaneously. Firstly, the correlation analysis of tasks and features is carried out using methods such as knowledge graph. Further, according to the sequential dependency between tasks, a novel cascaded multi-task crop prescription recommendation method based on Shared-Bottom and MMoE (Shared-MMoE) model is proposed, and each task is optimized by gating network. A PEMRs dataset containing 8 diseases, 9 pests and 32 medicines was constructed for model verification. Compared with the baseline model, the experiments showed that Shared-MMoE could significantly improve the quality and accuracy of prescription recommendation. The AUC of diagnosis task and medication task reached 96.33% and 95.36%, respectively. In conclusion, our study preliminarily explored the potential application of artificial intelligence in the research of crop diseases and pests based on PEMRs and multi-task learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
头哥应助nns采纳,获得10
1秒前
歌儿完成签到 ,获得积分10
1秒前
酷波er应助内向的苡采纳,获得30
1秒前
巾帼发布了新的文献求助10
1秒前
核桃应助独特秋双采纳,获得20
1秒前
得失完成签到 ,获得积分10
1秒前
建浩完成签到,获得积分10
2秒前
李健应助高登登采纳,获得10
2秒前
明太鱼完成签到,获得积分20
2秒前
2秒前
3秒前
pangzou发布了新的文献求助10
3秒前
桑落发布了新的文献求助10
4秒前
評評发布了新的文献求助10
4秒前
脑洞疼应助pan采纳,获得10
5秒前
11完成签到,获得积分10
5秒前
LYW完成签到,获得积分10
5秒前
无情的镜子完成签到,获得积分10
5秒前
英姑应助高高高高高一剑采纳,获得10
6秒前
化学兔八哥完成签到,获得积分10
6秒前
闪闪幼南完成签到,获得积分10
7秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
bkagyin应助巾帼采纳,获得10
8秒前
sanmu完成签到,获得积分10
8秒前
8秒前
勤恳雅莉应助centlay采纳,获得80
8秒前
9秒前
丘比特应助桑落采纳,获得10
9秒前
有趣的灵魂完成签到,获得积分10
9秒前
Hommand_藏山完成签到,获得积分10
10秒前
OK完成签到,获得积分10
10秒前
冷酷乐天发布了新的文献求助10
10秒前
科研木头人完成签到,获得积分10
10秒前
自然的平蓝完成签到,获得积分10
11秒前
Xilli完成签到 ,获得积分10
11秒前
zhx完成签到,获得积分10
11秒前
11秒前
风雨晴鸿完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997