A novel cascaded multi-task method for crop prescription recommendation based on electronic medical record

计算机科学 药方 任务(项目管理) 人工智能 机器学习 数据挖掘 医学 工程类 系统工程 药理学
作者
Chang Xu,Lei Zhao,Haojie Wen,Yiding Zhang,Lingxian Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108790-108790 被引量:7
标识
DOI:10.1016/j.compag.2024.108790
摘要

Research on diagnosis of crop diseases and pests becomes a hot topic of the application of artificial intelligence technology in smart agriculture. Plant electronic medical records (PEMRs) formed by Beijing Plant Clinic provides a new idea for the diagnosis and prevention of crop diseases and pests. PEMRs are stored in the form of heterogeneous data, containing a wealth of plant information, disease and pest information, and environmental information. Therefore, it is urgent to mine the information in PEMRs and employ it to assist in intelligent prescription recommendation. This paper divides prescription recommendation into two sub-tasks, diagnosis and medication, and transforms this problem into a recommendation problem based on multi-task learning, with the goal of establishing a single model to realize learning multi-task simultaneously. Firstly, the correlation analysis of tasks and features is carried out using methods such as knowledge graph. Further, according to the sequential dependency between tasks, a novel cascaded multi-task crop prescription recommendation method based on Shared-Bottom and MMoE (Shared-MMoE) model is proposed, and each task is optimized by gating network. A PEMRs dataset containing 8 diseases, 9 pests and 32 medicines was constructed for model verification. Compared with the baseline model, the experiments showed that Shared-MMoE could significantly improve the quality and accuracy of prescription recommendation. The AUC of diagnosis task and medication task reached 96.33% and 95.36%, respectively. In conclusion, our study preliminarily explored the potential application of artificial intelligence in the research of crop diseases and pests based on PEMRs and multi-task learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
客念完成签到 ,获得积分10
刚刚
price完成签到,获得积分10
刚刚
清秀寇完成签到,获得积分10
刚刚
自信的绮烟完成签到,获得积分10
1秒前
Li完成签到,获得积分0
1秒前
冬至完成签到,获得积分10
1秒前
屎上雕花选手完成签到,获得积分10
2秒前
小羊烧鸡完成签到,获得积分20
2秒前
Owen应助杨朝辉采纳,获得10
3秒前
HOHO发布了新的文献求助10
3秒前
Zhihu发布了新的文献求助10
4秒前
丁一发布了新的文献求助10
4秒前
小点完成签到 ,获得积分10
4秒前
llllda发布了新的文献求助10
4秒前
科研通AI6.1应助Nebulous采纳,获得10
4秒前
4秒前
whh发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
qingli应助zzt采纳,获得10
6秒前
Lucas应助更上一层楼采纳,获得10
6秒前
6秒前
酷波er应助天天采纳,获得10
7秒前
Flynn完成签到,获得积分10
7秒前
wobisheng完成签到,获得积分10
7秒前
香蕉发夹完成签到,获得积分10
7秒前
9秒前
11111完成签到,获得积分20
9秒前
哭泣青烟完成签到 ,获得积分10
10秒前
靶向噬菌体完成签到,获得积分10
10秒前
Owen应助小黑妞采纳,获得10
10秒前
llllda完成签到,获得积分10
10秒前
典雅路人完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
becky1234567完成签到,获得积分20
11秒前
故里发布了新的文献求助10
11秒前
隐形曼青应助whh采纳,获得10
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750533
求助须知:如何正确求助?哪些是违规求助? 5464445
关于积分的说明 15367142
捐赠科研通 4889534
什么是DOI,文献DOI怎么找? 2629268
邀请新用户注册赠送积分活动 1577591
关于科研通互助平台的介绍 1534036