亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel cascaded multi-task method for crop prescription recommendation based on electronic medical record

计算机科学 药方 任务(项目管理) 人工智能 机器学习 数据挖掘 医学 工程类 药理学 系统工程
作者
Chang Xu,Lei Zhao,Haojie Wen,Yiding Zhang,Lingxian Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108790-108790
标识
DOI:10.1016/j.compag.2024.108790
摘要

Research on diagnosis of crop diseases and pests becomes a hot topic of the application of artificial intelligence technology in smart agriculture. Plant electronic medical records (PEMRs) formed by Beijing Plant Clinic provides a new idea for the diagnosis and prevention of crop diseases and pests. PEMRs are stored in the form of heterogeneous data, containing a wealth of plant information, disease and pest information, and environmental information. Therefore, it is urgent to mine the information in PEMRs and employ it to assist in intelligent prescription recommendation. This paper divides prescription recommendation into two sub-tasks, diagnosis and medication, and transforms this problem into a recommendation problem based on multi-task learning, with the goal of establishing a single model to realize learning multi-task simultaneously. Firstly, the correlation analysis of tasks and features is carried out using methods such as knowledge graph. Further, according to the sequential dependency between tasks, a novel cascaded multi-task crop prescription recommendation method based on Shared-Bottom and MMoE (Shared-MMoE) model is proposed, and each task is optimized by gating network. A PEMRs dataset containing 8 diseases, 9 pests and 32 medicines was constructed for model verification. Compared with the baseline model, the experiments showed that Shared-MMoE could significantly improve the quality and accuracy of prescription recommendation. The AUC of diagnosis task and medication task reached 96.33% and 95.36%, respectively. In conclusion, our study preliminarily explored the potential application of artificial intelligence in the research of crop diseases and pests based on PEMRs and multi-task learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孟繁荣发布了新的文献求助10
4秒前
斯文败类应助孟繁荣采纳,获得10
13秒前
26秒前
孟繁荣发布了新的文献求助10
30秒前
Ava应助孟繁荣采纳,获得10
38秒前
41秒前
52秒前
孟繁荣发布了新的文献求助10
56秒前
1分钟前
甜美的秋尽完成签到,获得积分10
1分钟前
大个应助孟繁荣采纳,获得10
1分钟前
1分钟前
1分钟前
孟繁荣发布了新的文献求助10
1分钟前
1分钟前
慕青应助孟繁荣采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
1分钟前
1分钟前
孟繁荣发布了新的文献求助10
1分钟前
丸子头发布了新的文献求助10
1分钟前
Hello应助孟繁荣采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
丸子头完成签到,获得积分10
2分钟前
孟繁荣发布了新的文献求助10
2分钟前
田様应助孟繁荣采纳,获得10
2分钟前
袁青寒完成签到,获得积分10
2分钟前
2分钟前
2分钟前
孟繁荣发布了新的文献求助10
2分钟前
专注越彬完成签到,获得积分10
2分钟前
专注越彬发布了新的文献求助10
3分钟前
科研通AI5应助枯蚀采纳,获得10
3分钟前
3分钟前
Fairy完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4880231
求助须知:如何正确求助?哪些是违规求助? 4166952
关于积分的说明 12927398
捐赠科研通 3925807
什么是DOI,文献DOI怎么找? 2154922
邀请新用户注册赠送积分活动 1173009
关于科研通互助平台的介绍 1077253