A novel cascaded multi-task method for crop prescription recommendation based on electronic medical record

计算机科学 药方 任务(项目管理) 人工智能 机器学习 数据挖掘 医学 工程类 系统工程 药理学
作者
Chang Xu,Lei Zhao,Haojie Wen,Yiding Zhang,Lingxian Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108790-108790
标识
DOI:10.1016/j.compag.2024.108790
摘要

Research on diagnosis of crop diseases and pests becomes a hot topic of the application of artificial intelligence technology in smart agriculture. Plant electronic medical records (PEMRs) formed by Beijing Plant Clinic provides a new idea for the diagnosis and prevention of crop diseases and pests. PEMRs are stored in the form of heterogeneous data, containing a wealth of plant information, disease and pest information, and environmental information. Therefore, it is urgent to mine the information in PEMRs and employ it to assist in intelligent prescription recommendation. This paper divides prescription recommendation into two sub-tasks, diagnosis and medication, and transforms this problem into a recommendation problem based on multi-task learning, with the goal of establishing a single model to realize learning multi-task simultaneously. Firstly, the correlation analysis of tasks and features is carried out using methods such as knowledge graph. Further, according to the sequential dependency between tasks, a novel cascaded multi-task crop prescription recommendation method based on Shared-Bottom and MMoE (Shared-MMoE) model is proposed, and each task is optimized by gating network. A PEMRs dataset containing 8 diseases, 9 pests and 32 medicines was constructed for model verification. Compared with the baseline model, the experiments showed that Shared-MMoE could significantly improve the quality and accuracy of prescription recommendation. The AUC of diagnosis task and medication task reached 96.33% and 95.36%, respectively. In conclusion, our study preliminarily explored the potential application of artificial intelligence in the research of crop diseases and pests based on PEMRs and multi-task learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zy完成签到,获得积分10
刚刚
圈圈发布了新的文献求助10
刚刚
小陆完成签到,获得积分10
刚刚
高兴的半仙完成签到,获得积分10
1秒前
Asteroid发布了新的文献求助10
1秒前
情怀应助一眼丁真采纳,获得10
1秒前
2秒前
战国瞳完成签到,获得积分20
3秒前
开朗的念云完成签到,获得积分10
4秒前
陈早早完成签到,获得积分10
4秒前
王潇怡发布了新的文献求助10
4秒前
蚂蚱别跳发布了新的文献求助10
4秒前
科研通AI6应助ko_echo采纳,获得10
4秒前
5秒前
zbb发布了新的文献求助10
5秒前
5秒前
外向翠萱发布了新的文献求助10
5秒前
5秒前
大个应助能干蜜蜂采纳,获得50
6秒前
6秒前
柿柿如意完成签到,获得积分10
6秒前
汉堡包应助顺心白开水采纳,获得20
6秒前
猫和老鼠完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
dccapf发布了新的文献求助10
10秒前
10秒前
无花果应助zzzz采纳,获得10
10秒前
雨伞发布了新的文献求助30
10秒前
10秒前
zy发布了新的文献求助10
10秒前
jijiguo发布了新的文献求助10
11秒前
李爱国应助dagongren采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526107
求助须知:如何正确求助?哪些是违规求助? 4616283
关于积分的说明 14552778
捐赠科研通 4554503
什么是DOI,文献DOI怎么找? 2495919
邀请新用户注册赠送积分活动 1476266
关于科研通互助平台的介绍 1447928