A novel cascaded multi-task method for crop prescription recommendation based on electronic medical record

计算机科学 药方 任务(项目管理) 人工智能 机器学习 数据挖掘 医学 工程类 系统工程 药理学
作者
Chang Xu,Lei Zhao,Haojie Wen,Yiding Zhang,Lingxian Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108790-108790
标识
DOI:10.1016/j.compag.2024.108790
摘要

Research on diagnosis of crop diseases and pests becomes a hot topic of the application of artificial intelligence technology in smart agriculture. Plant electronic medical records (PEMRs) formed by Beijing Plant Clinic provides a new idea for the diagnosis and prevention of crop diseases and pests. PEMRs are stored in the form of heterogeneous data, containing a wealth of plant information, disease and pest information, and environmental information. Therefore, it is urgent to mine the information in PEMRs and employ it to assist in intelligent prescription recommendation. This paper divides prescription recommendation into two sub-tasks, diagnosis and medication, and transforms this problem into a recommendation problem based on multi-task learning, with the goal of establishing a single model to realize learning multi-task simultaneously. Firstly, the correlation analysis of tasks and features is carried out using methods such as knowledge graph. Further, according to the sequential dependency between tasks, a novel cascaded multi-task crop prescription recommendation method based on Shared-Bottom and MMoE (Shared-MMoE) model is proposed, and each task is optimized by gating network. A PEMRs dataset containing 8 diseases, 9 pests and 32 medicines was constructed for model verification. Compared with the baseline model, the experiments showed that Shared-MMoE could significantly improve the quality and accuracy of prescription recommendation. The AUC of diagnosis task and medication task reached 96.33% and 95.36%, respectively. In conclusion, our study preliminarily explored the potential application of artificial intelligence in the research of crop diseases and pests based on PEMRs and multi-task learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qwe完成签到,获得积分10
1秒前
馆长应助MCRing采纳,获得30
1秒前
Jiang 小白发布了新的文献求助10
2秒前
2秒前
2秒前
猪猪hero应助213采纳,获得10
3秒前
单薄树叶完成签到,获得积分10
3秒前
3秒前
Lawrence完成签到,获得积分10
3秒前
飘逸的书桃完成签到,获得积分10
4秒前
5秒前
长情砖头完成签到 ,获得积分10
5秒前
热电CAT完成签到,获得积分10
5秒前
Stride完成签到,获得积分10
7秒前
共享精神应助高挑的思菱采纳,获得10
7秒前
不想起床完成签到,获得积分10
7秒前
冷静龙猫发布了新的文献求助10
7秒前
米米发布了新的文献求助10
8秒前
竹筏过海应助SSS采纳,获得30
9秒前
Dodoremi发布了新的文献求助10
9秒前
Jiang 小白完成签到,获得积分10
10秒前
上官若男应助Miya采纳,获得10
10秒前
1210xi完成签到,获得积分10
10秒前
11秒前
墨墨完成签到 ,获得积分10
12秒前
Wuyyy发布了新的文献求助10
12秒前
shijiamian完成签到,获得积分10
13秒前
14秒前
万能图书馆应助米米采纳,获得10
14秒前
ziying126完成签到,获得积分10
15秒前
15秒前
chen完成签到,获得积分10
18秒前
18秒前
Dodoremi完成签到,获得积分10
18秒前
缥缈的安珊完成签到,获得积分10
21秒前
22秒前
22秒前
23秒前
MCRing完成签到,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546578
求助须知:如何正确求助?哪些是违规求助? 3977757
关于积分的说明 12317153
捐赠科研通 3646147
什么是DOI,文献DOI怎么找? 2008026
邀请新用户注册赠送积分活动 1043602
科研通“疑难数据库(出版商)”最低求助积分说明 932299