A novel cascaded multi-task method for crop prescription recommendation based on electronic medical record

计算机科学 药方 任务(项目管理) 人工智能 机器学习 数据挖掘 医学 工程类 系统工程 药理学
作者
Chang Xu,Lei Zhao,Haojie Wen,Yiding Zhang,Lingxian Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108790-108790
标识
DOI:10.1016/j.compag.2024.108790
摘要

Research on diagnosis of crop diseases and pests becomes a hot topic of the application of artificial intelligence technology in smart agriculture. Plant electronic medical records (PEMRs) formed by Beijing Plant Clinic provides a new idea for the diagnosis and prevention of crop diseases and pests. PEMRs are stored in the form of heterogeneous data, containing a wealth of plant information, disease and pest information, and environmental information. Therefore, it is urgent to mine the information in PEMRs and employ it to assist in intelligent prescription recommendation. This paper divides prescription recommendation into two sub-tasks, diagnosis and medication, and transforms this problem into a recommendation problem based on multi-task learning, with the goal of establishing a single model to realize learning multi-task simultaneously. Firstly, the correlation analysis of tasks and features is carried out using methods such as knowledge graph. Further, according to the sequential dependency between tasks, a novel cascaded multi-task crop prescription recommendation method based on Shared-Bottom and MMoE (Shared-MMoE) model is proposed, and each task is optimized by gating network. A PEMRs dataset containing 8 diseases, 9 pests and 32 medicines was constructed for model verification. Compared with the baseline model, the experiments showed that Shared-MMoE could significantly improve the quality and accuracy of prescription recommendation. The AUC of diagnosis task and medication task reached 96.33% and 95.36%, respectively. In conclusion, our study preliminarily explored the potential application of artificial intelligence in the research of crop diseases and pests based on PEMRs and multi-task learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李明涵发布了新的文献求助10
1秒前
2秒前
地泽万物完成签到,获得积分10
2秒前
annzl发布了新的文献求助10
2秒前
秦佳瑶发布了新的文献求助10
3秒前
科研通AI5应助豆豆采纳,获得10
4秒前
5秒前
晗晗完成签到,获得积分10
6秒前
6秒前
7秒前
无聊的万天完成签到,获得积分10
8秒前
8秒前
昵称呢发布了新的文献求助10
8秒前
9秒前
10秒前
张北海应助嘚嘚采纳,获得20
10秒前
11秒前
充电宝应助留白留白采纳,获得30
11秒前
11秒前
Shalan发布了新的文献求助10
11秒前
晗晗发布了新的文献求助10
12秒前
无风海发布了新的文献求助10
13秒前
等待的啤酒完成签到,获得积分10
14秒前
隐形曼青应助leeeeee采纳,获得10
15秒前
自由梦松完成签到,获得积分10
15秒前
坦率的匪应助称心寒松采纳,获得10
15秒前
FashionBoy应助超级盼烟采纳,获得10
15秒前
17秒前
Eliauk发布了新的文献求助10
17秒前
贺兰发布了新的文献求助10
17秒前
嘚嘚应助文件撤销了驳回
17秒前
18秒前
繁荣的行天完成签到,获得积分10
19秒前
打打应助余南采纳,获得10
19秒前
19秒前
JamesPei应助明理的姿采纳,获得10
21秒前
王大炮发布了新的文献求助10
21秒前
21秒前
小子完成签到,获得积分20
22秒前
miki完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992868
求助须知:如何正确求助?哪些是违规求助? 3533665
关于积分的说明 11263418
捐赠科研通 3273432
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629