A novel cascaded multi-task method for crop prescription recommendation based on electronic medical record

计算机科学 药方 任务(项目管理) 人工智能 机器学习 数据挖掘 医学 工程类 系统工程 药理学
作者
Chang Xu,Lei Zhao,Haojie Wen,Yiding Zhang,Lingxian Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108790-108790
标识
DOI:10.1016/j.compag.2024.108790
摘要

Research on diagnosis of crop diseases and pests becomes a hot topic of the application of artificial intelligence technology in smart agriculture. Plant electronic medical records (PEMRs) formed by Beijing Plant Clinic provides a new idea for the diagnosis and prevention of crop diseases and pests. PEMRs are stored in the form of heterogeneous data, containing a wealth of plant information, disease and pest information, and environmental information. Therefore, it is urgent to mine the information in PEMRs and employ it to assist in intelligent prescription recommendation. This paper divides prescription recommendation into two sub-tasks, diagnosis and medication, and transforms this problem into a recommendation problem based on multi-task learning, with the goal of establishing a single model to realize learning multi-task simultaneously. Firstly, the correlation analysis of tasks and features is carried out using methods such as knowledge graph. Further, according to the sequential dependency between tasks, a novel cascaded multi-task crop prescription recommendation method based on Shared-Bottom and MMoE (Shared-MMoE) model is proposed, and each task is optimized by gating network. A PEMRs dataset containing 8 diseases, 9 pests and 32 medicines was constructed for model verification. Compared with the baseline model, the experiments showed that Shared-MMoE could significantly improve the quality and accuracy of prescription recommendation. The AUC of diagnosis task and medication task reached 96.33% and 95.36%, respectively. In conclusion, our study preliminarily explored the potential application of artificial intelligence in the research of crop diseases and pests based on PEMRs and multi-task learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lifel发布了新的文献求助20
1秒前
优秀的甜菜完成签到,获得积分10
1秒前
马美丽完成签到 ,获得积分10
2秒前
Tanya发布了新的文献求助10
2秒前
SciGPT应助Sunflower采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
英姑应助小方采纳,获得10
4秒前
4秒前
9377应助Monkwy采纳,获得10
5秒前
科研通AI2S应助俏皮的龙猫采纳,获得10
5秒前
小马甲应助俏皮的龙猫采纳,获得10
5秒前
航_123应助左丘绝山采纳,获得10
5秒前
橙子发布了新的文献求助10
7秒前
jinyu完成签到,获得积分10
7秒前
9秒前
11秒前
12秒前
13秒前
胡慧婷发布了新的文献求助20
13秒前
Elizabeth12138完成签到 ,获得积分10
15秒前
东东发布了新的文献求助10
15秒前
共享精神应助momo采纳,获得10
16秒前
善学以致用应助王金娥采纳,获得10
17秒前
18秒前
充电宝应助AI采纳,获得10
24秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
26秒前
爆米花应助苏苏采纳,获得10
28秒前
酷波er应助yaorongxia采纳,获得10
30秒前
Xiaojiu发布了新的文献求助10
30秒前
31秒前
33秒前
Heyouatpome完成签到,获得积分10
33秒前
33秒前
zou发布了新的文献求助10
35秒前
36秒前
36秒前
斯文败类应助季子超采纳,获得10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425513
求助须知:如何正确求助?哪些是违规求助? 4539563
关于积分的说明 14168510
捐赠科研通 4457109
什么是DOI,文献DOI怎么找? 2444423
邀请新用户注册赠送积分活动 1435362
关于科研通互助平台的介绍 1412800