Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data

遥感 湿地 拉姆萨尔遗址 脆弱性(计算) 脆弱性评估 环境科学 地理 计算机科学 生态学 医学 计算机安全 精神科 心理干预 生物
作者
Rana Waqar Aslam,Hong Shu,Iram Naz,Abdul Quddoos,Andaleeb Yaseen,Khansa Gulshad,Saad S. Alarifi
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (5): 928-928 被引量:33
标识
DOI:10.3390/rs16050928
摘要

Wetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral water indices, land cover classification, change detection and risk mapping to examine moisture variability, land cover modifications, area changes and proximity-based threats over two decades. The random forest algorithm attained the highest accuracy (89.5%) for land cover classification based on rigorous k-fold cross-validation, with a training accuracy of 91.2% and a testing accuracy of 87.3%. This demonstrates the model’s effectiveness and robustness for wetland vulnerability modeling in the study area, showing 11% shrinkage in open water bodies since 2000. Inventory risk zoning revealed 30% of present-day wetland areas under moderate to high vulnerability. The cellular automata–Markov (CA–Markov) model predicted continued long-term declines driven by swelling anthropogenic pressures like the 29 million population growth surrounding Khinjhir Lake. The research demonstrates the effectiveness of integrating satellite data analytics, machine learning algorithms and spatial modeling to generate actionable insights into wetland vulnerability to guide conservation planning. The findings provide a robust baseline to inform policies aimed at ensuring the health and sustainable management and conservation of Khinjhir Lake wetlands in the face of escalating human and climatic pressures that threaten the ecological health and functioning of these vital ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心空完成签到,获得积分10
刚刚
桪玖发布了新的文献求助30
刚刚
刚刚
2秒前
3秒前
4秒前
4秒前
迟大猫应助Punch采纳,获得10
5秒前
chen发布了新的文献求助10
5秒前
科研通AI5应助顺顺利利采纳,获得10
6秒前
dyfsj完成签到,获得积分10
6秒前
QI发布了新的文献求助10
6秒前
7秒前
tianx发布了新的文献求助10
8秒前
11秒前
11秒前
汉堡包应助月亮是甜的采纳,获得10
12秒前
科研通AI5应助QI采纳,获得10
12秒前
12秒前
14秒前
14秒前
Ani完成签到,获得积分10
14秒前
南城发布了新的文献求助10
15秒前
15秒前
16秒前
你不知道发布了新的文献求助10
17秒前
17秒前
17秒前
20秒前
20秒前
旋转的龙发布了新的文献求助10
20秒前
徐嘿嘿发布了新的文献求助10
21秒前
22秒前
23秒前
23秒前
23秒前
23秒前
hang完成签到,获得积分10
24秒前
潇潇微雨发布了新的文献求助10
24秒前
华仔应助科研通管家采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514599
求助须知:如何正确求助?哪些是违规求助? 3096989
关于积分的说明 9233427
捐赠科研通 2791987
什么是DOI,文献DOI怎么找? 1532191
邀请新用户注册赠送积分活动 711826
科研通“疑难数据库(出版商)”最低求助积分说明 707031