Forecast of Solar Cycle 25 based on Hybrid CNN-Bidirectional-GRU (CNN-BiGRU) model and Novel Gradient Residual Correction (GRC) Technique

残余物 平均绝对百分比误差 均方误差 计算机科学 人工神经网络 卷积神经网络 人工智能 试验数据 模式识别(心理学) 数学 统计 算法 程序设计语言
作者
Abhijeet Kumar,Vipin Kumar
出处
期刊:Advances in Space Research [Elsevier BV]
卷期号:73 (8): 4342-4362
标识
DOI:10.1016/j.asr.2024.01.019
摘要

In this study, a hybrid deep-learning(DL) model is proposed, which consists of a Convolution-Neural-Network (CNN) and Bidirectional-Gated-Recurrent-Unit (Bi-GRU) for the prediction of sunspot numbers(SSN) of different frequencies along with novel post-processing techniques of Gradient-Residual-Correction (GRC) to enhance the accuracy of the predictions further. GRC is utilized to reduce the residual present in the forecasted values. The AdaBoost regression model is implemented over the residual obtained from the prediction of training data using a hybrid CNN-BiGRU model with respect to the gradient of the training data points to predict the residual for the test data points. Ultimately, the predicted residual for test data points is summed up with the predicted test data points to achieve the final predictions. The results obtained from the proposed methods are compared with the results obtained from traditional DL models. The validation of the proposed method is carried out based on four performance metrics, namely Root Mean Squared Error(RMSE), Mean Absolute Scaled Error(MASE), Mean Absolute Error(MAE), and Mean Absolute Percentage Error(MAPE). A significant percentage of improvement is observed while using the GRC technique in comparison to all other experimented models for all four variants of SSN data. A maximum improvement of 85.71% has been achieved in comparison to the BiLSTM model over the 13-month smoothed SSN dataset on the basis of MAPE. Friedman Ranking is also performed as a non-parametric statistical test over the results of the performance measures. This model has been utilized for the forecast of solar cycle 25(SC25) over the annual mean of total SSN. It has been observed that the SC25 is expected to reach its peak in the year 2024 with an annual average peak value of 143.641. Comparative analysis of SC25 and the peak of SSN in the ongoing cycle with the previous works are also carried out.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhang5657发布了新的文献求助10
刚刚
劈头士完成签到,获得积分10
1秒前
1秒前
zhenggggg完成签到,获得积分10
2秒前
研友_VZG7GZ应助chw采纳,获得10
3秒前
俊杰发布了新的文献求助10
3秒前
大模型应助于于于采纳,获得10
4秒前
代纤绮完成签到,获得积分10
5秒前
5秒前
科研通AI5应助陈敏采纳,获得10
6秒前
6秒前
6秒前
6秒前
Hello应助Adam采纳,获得10
7秒前
爱喝橘子汽水完成签到 ,获得积分10
7秒前
爱美丽应助wdhsxk采纳,获得10
7秒前
tpp完成签到,获得积分10
9秒前
10秒前
CodeCraft应助顺利的傲云采纳,获得10
10秒前
FashionBoy应助一一采纳,获得10
10秒前
爱喝橘子汽水关注了科研通微信公众号
10秒前
川崎山茶发布了新的文献求助10
10秒前
111发布了新的文献求助10
11秒前
收手吧大哥应助一er采纳,获得10
11秒前
11秒前
何aa完成签到 ,获得积分10
12秒前
xin完成签到,获得积分10
12秒前
12秒前
浮游应助顺利采纳,获得10
13秒前
13秒前
14秒前
天天快乐应助俊杰采纳,获得10
14秒前
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
chw发布了新的文献求助10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
ESDU TM 218 An example of air data pressure correction with a dependency on engine power settings 400
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5035825
求助须知:如何正确求助?哪些是违规求助? 4268774
关于积分的说明 13308468
捐赠科研通 4079589
什么是DOI,文献DOI怎么找? 2231556
邀请新用户注册赠送积分活动 1239764
关于科研通互助平台的介绍 1165679