Forecast of Solar Cycle 25 based on Hybrid CNN-Bidirectional-GRU (CNN-BiGRU) model and Novel Gradient Residual Correction (GRC) Technique

残余物 平均绝对百分比误差 均方误差 计算机科学 人工神经网络 卷积神经网络 人工智能 试验数据 模式识别(心理学) 数学 统计 算法 程序设计语言
作者
Abhijeet Kumar,Vipin Kumar
出处
期刊:Advances in Space Research [Elsevier]
卷期号:73 (8): 4342-4362
标识
DOI:10.1016/j.asr.2024.01.019
摘要

In this study, a hybrid deep-learning(DL) model is proposed, which consists of a Convolution-Neural-Network (CNN) and Bidirectional-Gated-Recurrent-Unit (Bi-GRU) for the prediction of sunspot numbers(SSN) of different frequencies along with novel post-processing techniques of Gradient-Residual-Correction (GRC) to enhance the accuracy of the predictions further. GRC is utilized to reduce the residual present in the forecasted values. The AdaBoost regression model is implemented over the residual obtained from the prediction of training data using a hybrid CNN-BiGRU model with respect to the gradient of the training data points to predict the residual for the test data points. Ultimately, the predicted residual for test data points is summed up with the predicted test data points to achieve the final predictions. The results obtained from the proposed methods are compared with the results obtained from traditional DL models. The validation of the proposed method is carried out based on four performance metrics, namely Root Mean Squared Error(RMSE), Mean Absolute Scaled Error(MASE), Mean Absolute Error(MAE), and Mean Absolute Percentage Error(MAPE). A significant percentage of improvement is observed while using the GRC technique in comparison to all other experimented models for all four variants of SSN data. A maximum improvement of 85.71% has been achieved in comparison to the BiLSTM model over the 13-month smoothed SSN dataset on the basis of MAPE. Friedman Ranking is also performed as a non-parametric statistical test over the results of the performance measures. This model has been utilized for the forecast of solar cycle 25(SC25) over the annual mean of total SSN. It has been observed that the SC25 is expected to reach its peak in the year 2024 with an annual average peak value of 143.641. Comparative analysis of SC25 and the peak of SSN in the ongoing cycle with the previous works are also carried out.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖虎完成签到,获得积分10
1秒前
bkagyin应助mushini采纳,获得10
1秒前
知性的乐荷完成签到,获得积分10
1秒前
澎鱼盐完成签到,获得积分10
1秒前
向阳而生完成签到,获得积分10
2秒前
2秒前
李健的粉丝团团长应助dudu采纳,获得10
3秒前
英俊的老太完成签到,获得积分10
3秒前
gms关闭了gms文献求助
3秒前
3秒前
大饼完成签到,获得积分10
3秒前
妮妮完成签到,获得积分10
5秒前
OFish完成签到,获得积分10
5秒前
6秒前
6秒前
Yziii举报登登求助涉嫌违规
6秒前
虚幻花卷发布了新的文献求助10
6秒前
丘比特应助咕噜噜采纳,获得20
6秒前
嘻嘻完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
爱静静应助伍六七采纳,获得10
8秒前
布鲁发布了新的文献求助10
9秒前
孙意冉完成签到,获得积分10
10秒前
10秒前
小青完成签到,获得积分10
10秒前
springlover完成签到,获得积分0
10秒前
婷小胖完成签到,获得积分10
10秒前
10秒前
无有完成签到,获得积分10
10秒前
贤惠的迎夏完成签到,获得积分10
11秒前
可乐鸡翅完成签到,获得积分10
11秒前
ccc发布了新的文献求助10
12秒前
冷静的静蕾完成签到,获得积分10
13秒前
13秒前
小菜坤发布了新的文献求助10
13秒前
XIeXIe发布了新的文献求助10
14秒前
readingbent完成签到 ,获得积分10
14秒前
任性铅笔完成签到,获得积分10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257646
求助须知:如何正确求助?哪些是违规求助? 2899495
关于积分的说明 8306249
捐赠科研通 2568732
什么是DOI,文献DOI怎么找? 1395281
科研通“疑难数据库(出版商)”最低求助积分说明 652995
邀请新用户注册赠送积分活动 630822