Forecast of Solar Cycle 25 based on Hybrid CNN-Bidirectional-GRU (CNN-BiGRU) model and Novel Gradient Residual Correction (GRC) Technique

残余物 平均绝对百分比误差 均方误差 计算机科学 人工神经网络 卷积神经网络 人工智能 试验数据 模式识别(心理学) 数学 统计 算法 程序设计语言
作者
Abhijeet Kumar,Vipin Kumar
出处
期刊:Advances in Space Research [Elsevier]
卷期号:73 (8): 4342-4362
标识
DOI:10.1016/j.asr.2024.01.019
摘要

In this study, a hybrid deep-learning(DL) model is proposed, which consists of a Convolution-Neural-Network (CNN) and Bidirectional-Gated-Recurrent-Unit (Bi-GRU) for the prediction of sunspot numbers(SSN) of different frequencies along with novel post-processing techniques of Gradient-Residual-Correction (GRC) to enhance the accuracy of the predictions further. GRC is utilized to reduce the residual present in the forecasted values. The AdaBoost regression model is implemented over the residual obtained from the prediction of training data using a hybrid CNN-BiGRU model with respect to the gradient of the training data points to predict the residual for the test data points. Ultimately, the predicted residual for test data points is summed up with the predicted test data points to achieve the final predictions. The results obtained from the proposed methods are compared with the results obtained from traditional DL models. The validation of the proposed method is carried out based on four performance metrics, namely Root Mean Squared Error(RMSE), Mean Absolute Scaled Error(MASE), Mean Absolute Error(MAE), and Mean Absolute Percentage Error(MAPE). A significant percentage of improvement is observed while using the GRC technique in comparison to all other experimented models for all four variants of SSN data. A maximum improvement of 85.71% has been achieved in comparison to the BiLSTM model over the 13-month smoothed SSN dataset on the basis of MAPE. Friedman Ranking is also performed as a non-parametric statistical test over the results of the performance measures. This model has been utilized for the forecast of solar cycle 25(SC25) over the annual mean of total SSN. It has been observed that the SC25 is expected to reach its peak in the year 2024 with an annual average peak value of 143.641. Comparative analysis of SC25 and the peak of SSN in the ongoing cycle with the previous works are also carried out.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
remimazolam完成签到,获得积分10
刚刚
zzyy完成签到,获得积分10
1秒前
1秒前
Lucas应助TingtingGZ采纳,获得10
2秒前
悟空发布了新的文献求助30
3秒前
3秒前
3秒前
端庄凌文发布了新的文献求助10
4秒前
Hello应助鲤鱼金针菇采纳,获得10
4秒前
guoguo发布了新的文献求助10
4秒前
小红要发文章哦完成签到,获得积分10
4秒前
付冀川完成签到,获得积分10
5秒前
renjian完成签到,获得积分10
6秒前
回复对方完成签到,获得积分10
7秒前
邓佳鑫Alan应助科研小白菜采纳,获得10
8秒前
举人烧烤发布了新的文献求助10
8秒前
9秒前
10秒前
千凡发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
李健的小迷弟应助郭郭郭采纳,获得10
13秒前
13秒前
13秒前
52251013106发布了新的文献求助10
14秒前
14秒前
科研通AI6应助fangzhang采纳,获得10
15秒前
王冠军发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
16秒前
屈勇旭完成签到,获得积分10
17秒前
17秒前
鸡蛋酱完成签到 ,获得积分10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756