Forecast of Solar Cycle 25 based on Hybrid CNN-Bidirectional-GRU (CNN-BiGRU) model and Novel Gradient Residual Correction (GRC) Technique

残余物 平均绝对百分比误差 均方误差 计算机科学 人工神经网络 卷积神经网络 人工智能 试验数据 模式识别(心理学) 数学 统计 算法 程序设计语言
作者
Abhijeet Kumar,Vipin Kumar
出处
期刊:Advances in Space Research [Elsevier BV]
卷期号:73 (8): 4342-4362
标识
DOI:10.1016/j.asr.2024.01.019
摘要

In this study, a hybrid deep-learning(DL) model is proposed, which consists of a Convolution-Neural-Network (CNN) and Bidirectional-Gated-Recurrent-Unit (Bi-GRU) for the prediction of sunspot numbers(SSN) of different frequencies along with novel post-processing techniques of Gradient-Residual-Correction (GRC) to enhance the accuracy of the predictions further. GRC is utilized to reduce the residual present in the forecasted values. The AdaBoost regression model is implemented over the residual obtained from the prediction of training data using a hybrid CNN-BiGRU model with respect to the gradient of the training data points to predict the residual for the test data points. Ultimately, the predicted residual for test data points is summed up with the predicted test data points to achieve the final predictions. The results obtained from the proposed methods are compared with the results obtained from traditional DL models. The validation of the proposed method is carried out based on four performance metrics, namely Root Mean Squared Error(RMSE), Mean Absolute Scaled Error(MASE), Mean Absolute Error(MAE), and Mean Absolute Percentage Error(MAPE). A significant percentage of improvement is observed while using the GRC technique in comparison to all other experimented models for all four variants of SSN data. A maximum improvement of 85.71% has been achieved in comparison to the BiLSTM model over the 13-month smoothed SSN dataset on the basis of MAPE. Friedman Ranking is also performed as a non-parametric statistical test over the results of the performance measures. This model has been utilized for the forecast of solar cycle 25(SC25) over the annual mean of total SSN. It has been observed that the SC25 is expected to reach its peak in the year 2024 with an annual average peak value of 143.641. Comparative analysis of SC25 and the peak of SSN in the ongoing cycle with the previous works are also carried out.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fjh完成签到,获得积分10
刚刚
刚刚
咕咕完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
2秒前
4秒前
aaa发布了新的文献求助20
5秒前
白紫寒发布了新的文献求助30
5秒前
香蕉觅云应助TYRsunny采纳,获得10
6秒前
okay1123发布了新的文献求助10
6秒前
浅夏初晴发布了新的文献求助10
6秒前
Li发布了新的文献求助10
7秒前
小马甲应助挺帅一男的采纳,获得10
7秒前
英姑应助brian0326采纳,获得10
7秒前
8秒前
传奇3应助Sdx采纳,获得10
8秒前
桐桐应助动点子智慧采纳,获得10
9秒前
小蘑菇应助烦烦采纳,获得10
10秒前
xzz发布了新的文献求助10
13秒前
13秒前
李爱国应助小鱼采纳,获得10
14秒前
动感光波发布了新的文献求助20
14秒前
Dora发布了新的文献求助10
14秒前
星辰大海应助wrecust采纳,获得30
15秒前
wilapple完成签到,获得积分10
15秒前
粽子完成签到,获得积分10
16秒前
张老涵发布了新的文献求助10
16秒前
16秒前
17秒前
AMAME12发布了新的文献求助10
17秒前
yhx发布了新的文献求助10
18秒前
18秒前
djxdjt发布了新的文献求助10
19秒前
xzz完成签到,获得积分10
19秒前
19秒前
sopha发布了新的文献求助10
20秒前
大曼发布了新的文献求助10
20秒前
南枝瑾完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289127
求助须知:如何正确求助?哪些是违规求助? 4440879
关于积分的说明 13825797
捐赠科研通 4323161
什么是DOI,文献DOI怎么找? 2372993
邀请新用户注册赠送积分活动 1368430
关于科研通互助平台的介绍 1332352