An Exploration into the Fault Diagnosis of Analog Circuits Using Enhanced Golden Eagle Optimized 1D-Convolutional Neural Network (CNN) with a Time-Frequency Domain Input and Attention Mechanism

卷积神经网络 计算机科学 频域 机制(生物学) 时域 断层(地质) 模拟电子学 领域(数学分析) 电子线路 人工神经网络 生物神经网络 人工智能 电子工程 计算机体系结构 机器学习 电气工程 工程类 计算机视觉 数学 地震学 地质学 古生物学 数学分析 哲学 认识论 生物
作者
Jiyuan Gao,Jiang Guo,Fang Yuan,Tongqiang Yi,Fangqing Zhang,Yongjie Shi,Zhaoyang Li,Yiming Ke,Meng Yang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (2): 390-390 被引量:4
标识
DOI:10.3390/s24020390
摘要

With the continuous operation of analog circuits, the component degradation problem gradually comes to the forefront, which may lead to problems, such as circuit performance degradation, system stability reductions, and signal quality degradation, which could be particularly evident in increasingly complex electronic systems. At the same time, due to factors, such as continuous signal transformation, the fluctuation of component parameters, and the nonlinear characteristics of components, traditional fault localization methods are still facing significant challenges when dealing with large-scale complex circuit faults. Based on this, this paper proposes a fault-diagnosis method for analog circuits using the ECWGEO algorithm, an enhanced version of the GEO algorithm, to de-optimize the 1D-CNN with an attention mechanism to handle time–frequency fusion inputs. Firstly, a typical circuit-quad op-amp dual second-order filter circuit is selected to construct a fault-simulation model, and Monte Carlo analysis is used to obtain a large number of samples as the dataset of this study. Secondly, the 1D-CNN network structure is improved for the characteristics of the analog circuits themselves, and the time–frequency domain fusion input is implemented before inputting it into the network, while the attention mechanism is introduced into the network. Thirdly, instead of relying on traditional experience for network structure determination, this paper adopts a parameter-optimization algorithm for network structure optimization and improves the GEO algorithm according to the problem characteristics, which enhances the diversity of populations in the late stage of its search and accelerates the convergence speed. Finally, experiments are designed to compare the results in different dimensions, and the final proposed structure achieved a 98.93% classification accuracy, which is better than other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助饱满的问丝采纳,获得20
2秒前
隐形曼青应助乐观的鞋垫采纳,获得10
2秒前
3秒前
小小发布了新的文献求助10
3秒前
3秒前
薯条精完成签到 ,获得积分20
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
悲伤小蝴蝶完成签到,获得积分10
4秒前
dd发布了新的文献求助10
5秒前
碳酸钠完成签到,获得积分10
6秒前
以州完成签到,获得积分10
6秒前
xiemeili发布了新的文献求助10
7秒前
陌上发布了新的文献求助10
7秒前
diong发布了新的文献求助10
7秒前
8秒前
uoiewo完成签到,获得积分10
8秒前
fafafamc完成签到 ,获得积分10
9秒前
顺利萃发布了新的文献求助10
9秒前
在南方看北方完成签到,获得积分10
9秒前
优秀丸子完成签到,获得积分10
11秒前
12秒前
爱壹帆完成签到,获得积分10
12秒前
13秒前
13秒前
HOU应助卓惜筠采纳,获得10
13秒前
YUNA完成签到 ,获得积分10
13秒前
14秒前
糯米团子完成签到,获得积分10
15秒前
CipherSage应助DYZ采纳,获得10
15秒前
丘比特应助su采纳,获得10
15秒前
慕青应助开朗的之卉采纳,获得10
15秒前
能力越小责任越小完成签到,获得积分10
16秒前
顺利萃完成签到,获得积分10
16秒前
17秒前
勤恳元枫发布了新的文献求助10
18秒前
悟空发布了新的文献求助10
18秒前
19秒前
爱笑的蜗牛完成签到,获得积分20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952