An Exploration into the Fault Diagnosis of Analog Circuits Using Enhanced Golden Eagle Optimized 1D-Convolutional Neural Network (CNN) with a Time-Frequency Domain Input and Attention Mechanism

卷积神经网络 计算机科学 频域 机制(生物学) 时域 断层(地质) 模拟电子学 领域(数学分析) 电子线路 人工神经网络 生物神经网络 人工智能 电子工程 计算机体系结构 机器学习 电气工程 工程类 计算机视觉 数学 地震学 地质学 古生物学 数学分析 哲学 认识论 生物
作者
Jiyuan Gao,Jiang Guo,Fang Yuan,Tongqiang Yi,Fangqing Zhang,Yongjie Shi,Zhaoyang Li,Yiming Ke,Meng Yang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (2): 390-390 被引量:4
标识
DOI:10.3390/s24020390
摘要

With the continuous operation of analog circuits, the component degradation problem gradually comes to the forefront, which may lead to problems, such as circuit performance degradation, system stability reductions, and signal quality degradation, which could be particularly evident in increasingly complex electronic systems. At the same time, due to factors, such as continuous signal transformation, the fluctuation of component parameters, and the nonlinear characteristics of components, traditional fault localization methods are still facing significant challenges when dealing with large-scale complex circuit faults. Based on this, this paper proposes a fault-diagnosis method for analog circuits using the ECWGEO algorithm, an enhanced version of the GEO algorithm, to de-optimize the 1D-CNN with an attention mechanism to handle time–frequency fusion inputs. Firstly, a typical circuit-quad op-amp dual second-order filter circuit is selected to construct a fault-simulation model, and Monte Carlo analysis is used to obtain a large number of samples as the dataset of this study. Secondly, the 1D-CNN network structure is improved for the characteristics of the analog circuits themselves, and the time–frequency domain fusion input is implemented before inputting it into the network, while the attention mechanism is introduced into the network. Thirdly, instead of relying on traditional experience for network structure determination, this paper adopts a parameter-optimization algorithm for network structure optimization and improves the GEO algorithm according to the problem characteristics, which enhances the diversity of populations in the late stage of its search and accelerates the convergence speed. Finally, experiments are designed to compare the results in different dimensions, and the final proposed structure achieved a 98.93% classification accuracy, which is better than other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
健忘的曼青完成签到,获得积分20
2秒前
林摆摆完成签到,获得积分10
2秒前
CodeCraft应助zg采纳,获得10
3秒前
3秒前
wait发布了新的文献求助10
3秒前
深林狼发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助30
4秒前
创不可贴发布了新的文献求助10
4秒前
丛士乔完成签到 ,获得积分10
4秒前
littleknees发布了新的文献求助10
4秒前
独特芝麻发布了新的文献求助10
6秒前
苗条的元风完成签到,获得积分10
6秒前
6秒前
jia完成签到,获得积分10
7秒前
8秒前
8秒前
SSNN发布了新的文献求助10
8秒前
8秒前
littleknees完成签到,获得积分10
9秒前
Kizuna发布了新的文献求助10
9秒前
zz完成签到,获得积分10
10秒前
10秒前
vicky完成签到,获得积分10
10秒前
11秒前
11秒前
swich发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
一一关注了科研通微信公众号
13秒前
帅气难破完成签到 ,获得积分10
13秒前
Akim应助1056720198采纳,获得10
14秒前
潇洒的血茗完成签到 ,获得积分10
14秒前
zz发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735868
求助须知:如何正确求助?哪些是违规求助? 5363199
关于积分的说明 15331638
捐赠科研通 4879999
什么是DOI,文献DOI怎么找? 2622459
邀请新用户注册赠送积分活动 1571448
关于科研通互助平台的介绍 1528243