An Exploration into the Fault Diagnosis of Analog Circuits Using Enhanced Golden Eagle Optimized 1D-Convolutional Neural Network (CNN) with a Time-Frequency Domain Input and Attention Mechanism

卷积神经网络 计算机科学 频域 机制(生物学) 时域 断层(地质) 模拟电子学 领域(数学分析) 电子线路 人工神经网络 生物神经网络 人工智能 电子工程 计算机体系结构 机器学习 电气工程 工程类 计算机视觉 数学 地震学 地质学 古生物学 数学分析 哲学 认识论 生物
作者
Jiyuan Gao,Jiang Guo,Fang Yuan,Tongqiang Yi,Fangqing Zhang,Yongjie Shi,Zhaoyang Li,Yiming Ke,Meng Yang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (2): 390-390 被引量:4
标识
DOI:10.3390/s24020390
摘要

With the continuous operation of analog circuits, the component degradation problem gradually comes to the forefront, which may lead to problems, such as circuit performance degradation, system stability reductions, and signal quality degradation, which could be particularly evident in increasingly complex electronic systems. At the same time, due to factors, such as continuous signal transformation, the fluctuation of component parameters, and the nonlinear characteristics of components, traditional fault localization methods are still facing significant challenges when dealing with large-scale complex circuit faults. Based on this, this paper proposes a fault-diagnosis method for analog circuits using the ECWGEO algorithm, an enhanced version of the GEO algorithm, to de-optimize the 1D-CNN with an attention mechanism to handle time–frequency fusion inputs. Firstly, a typical circuit-quad op-amp dual second-order filter circuit is selected to construct a fault-simulation model, and Monte Carlo analysis is used to obtain a large number of samples as the dataset of this study. Secondly, the 1D-CNN network structure is improved for the characteristics of the analog circuits themselves, and the time–frequency domain fusion input is implemented before inputting it into the network, while the attention mechanism is introduced into the network. Thirdly, instead of relying on traditional experience for network structure determination, this paper adopts a parameter-optimization algorithm for network structure optimization and improves the GEO algorithm according to the problem characteristics, which enhances the diversity of populations in the late stage of its search and accelerates the convergence speed. Finally, experiments are designed to compare the results in different dimensions, and the final proposed structure achieved a 98.93% classification accuracy, which is better than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
科目三应助dl采纳,获得10
刚刚
李晶晶完成签到 ,获得积分10
刚刚
1秒前
狂野的河马完成签到,获得积分10
1秒前
sdniuidifod发布了新的文献求助10
1秒前
勤奋的松鼠完成签到,获得积分10
2秒前
Survivor应助儒雅沛凝采纳,获得10
2秒前
喜欢小葵花生油完成签到,获得积分10
2秒前
科研通AI2S应助科研小菜采纳,获得10
2秒前
3秒前
背后的鹭洋完成签到,获得积分10
3秒前
4秒前
淡淡的发卡完成签到,获得积分10
4秒前
wjswift完成签到,获得积分10
4秒前
4秒前
暗黑同学完成签到,获得积分10
5秒前
admin发布了新的文献求助10
5秒前
赵丹发布了新的文献求助10
6秒前
Jundy完成签到,获得积分10
6秒前
李白完成签到,获得积分10
6秒前
6秒前
彩色蘑菇完成签到,获得积分10
6秒前
7秒前
7秒前
SYLH应助lqkcqmu采纳,获得30
7秒前
8秒前
TANG完成签到,获得积分10
8秒前
9秒前
pm完成签到,获得积分20
9秒前
热情铭发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
Jenaloe发布了新的文献求助10
11秒前
自然1111发布了新的文献求助10
11秒前
李健的小迷弟应助哈士轩采纳,获得10
11秒前
11秒前
11秒前
Akim应助怡然嚣采纳,获得30
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620