An Exploration into the Fault Diagnosis of Analog Circuits Using Enhanced Golden Eagle Optimized 1D-Convolutional Neural Network (CNN) with a Time-Frequency Domain Input and Attention Mechanism

卷积神经网络 计算机科学 频域 机制(生物学) 时域 断层(地质) 模拟电子学 领域(数学分析) 电子线路 人工神经网络 生物神经网络 人工智能 电子工程 计算机体系结构 机器学习 电气工程 工程类 计算机视觉 数学 地震学 地质学 古生物学 数学分析 哲学 认识论 生物
作者
Jiyuan Gao,Jiang Guo,Fang Yuan,Tongqiang Yi,Fangqing Zhang,Yongjie Shi,Zhaoyang Li,Yiming Ke,Meng Yang
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (2): 390-390 被引量:4
标识
DOI:10.3390/s24020390
摘要

With the continuous operation of analog circuits, the component degradation problem gradually comes to the forefront, which may lead to problems, such as circuit performance degradation, system stability reductions, and signal quality degradation, which could be particularly evident in increasingly complex electronic systems. At the same time, due to factors, such as continuous signal transformation, the fluctuation of component parameters, and the nonlinear characteristics of components, traditional fault localization methods are still facing significant challenges when dealing with large-scale complex circuit faults. Based on this, this paper proposes a fault-diagnosis method for analog circuits using the ECWGEO algorithm, an enhanced version of the GEO algorithm, to de-optimize the 1D-CNN with an attention mechanism to handle time–frequency fusion inputs. Firstly, a typical circuit-quad op-amp dual second-order filter circuit is selected to construct a fault-simulation model, and Monte Carlo analysis is used to obtain a large number of samples as the dataset of this study. Secondly, the 1D-CNN network structure is improved for the characteristics of the analog circuits themselves, and the time–frequency domain fusion input is implemented before inputting it into the network, while the attention mechanism is introduced into the network. Thirdly, instead of relying on traditional experience for network structure determination, this paper adopts a parameter-optimization algorithm for network structure optimization and improves the GEO algorithm according to the problem characteristics, which enhances the diversity of populations in the late stage of its search and accelerates the convergence speed. Finally, experiments are designed to compare the results in different dimensions, and the final proposed structure achieved a 98.93% classification accuracy, which is better than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pingpinglver发布了新的文献求助10
1秒前
1秒前
小水滴完成签到,获得积分10
1秒前
2秒前
wuwuwu完成签到,获得积分10
2秒前
3秒前
小蘑菇应助dddd采纳,获得10
3秒前
kong完成签到,获得积分10
3秒前
NexusExplorer应助秋水采纳,获得10
4秒前
太叔开山发布了新的文献求助10
4秒前
今后应助超人研究生采纳,获得10
4秒前
4秒前
Lucas应助111采纳,获得10
4秒前
pride发布了新的文献求助10
4秒前
脑洞疼应助Loooong采纳,获得10
5秒前
wwz应助SunSun采纳,获得10
5秒前
123完成签到,获得积分10
5秒前
5秒前
小水滴发布了新的文献求助10
6秒前
不倦应助酸海椒采纳,获得10
6秒前
zcl应助Kenny采纳,获得30
6秒前
6秒前
reny发布了新的文献求助10
6秒前
曾小荣完成签到,获得积分10
7秒前
zzzz发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
ZAJsci完成签到 ,获得积分10
9秒前
搞怪彩虹发布了新的文献求助10
9秒前
pentjy完成签到,获得积分10
9秒前
典雅的皓轩完成签到 ,获得积分10
10秒前
10秒前
10秒前
小新完成签到,获得积分10
10秒前
10秒前
giao发布了新的文献求助10
10秒前
fanhlin发布了新的文献求助150
11秒前
Min发布了新的文献求助10
11秒前
kuandong完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258050
求助须知:如何正确求助?哪些是违规求助? 4419997
关于积分的说明 13758921
捐赠科研通 4293480
什么是DOI,文献DOI怎么找? 2356024
邀请新用户注册赠送积分活动 1352424
关于科研通互助平台的介绍 1313196