An Exploration into the Fault Diagnosis of Analog Circuits Using Enhanced Golden Eagle Optimized 1D-Convolutional Neural Network (CNN) with a Time-Frequency Domain Input and Attention Mechanism

卷积神经网络 计算机科学 频域 机制(生物学) 时域 断层(地质) 模拟电子学 领域(数学分析) 电子线路 人工神经网络 生物神经网络 人工智能 电子工程 计算机体系结构 机器学习 电气工程 工程类 计算机视觉 数学 地震学 地质学 古生物学 数学分析 哲学 认识论 生物
作者
Jiyuan Gao,Jiang Guo,Fang Yuan,Tongqiang Yi,Fangqing Zhang,Yongjie Shi,Zhaoyang Li,Yiming Ke,Meng Yang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (2): 390-390 被引量:4
标识
DOI:10.3390/s24020390
摘要

With the continuous operation of analog circuits, the component degradation problem gradually comes to the forefront, which may lead to problems, such as circuit performance degradation, system stability reductions, and signal quality degradation, which could be particularly evident in increasingly complex electronic systems. At the same time, due to factors, such as continuous signal transformation, the fluctuation of component parameters, and the nonlinear characteristics of components, traditional fault localization methods are still facing significant challenges when dealing with large-scale complex circuit faults. Based on this, this paper proposes a fault-diagnosis method for analog circuits using the ECWGEO algorithm, an enhanced version of the GEO algorithm, to de-optimize the 1D-CNN with an attention mechanism to handle time–frequency fusion inputs. Firstly, a typical circuit-quad op-amp dual second-order filter circuit is selected to construct a fault-simulation model, and Monte Carlo analysis is used to obtain a large number of samples as the dataset of this study. Secondly, the 1D-CNN network structure is improved for the characteristics of the analog circuits themselves, and the time–frequency domain fusion input is implemented before inputting it into the network, while the attention mechanism is introduced into the network. Thirdly, instead of relying on traditional experience for network structure determination, this paper adopts a parameter-optimization algorithm for network structure optimization and improves the GEO algorithm according to the problem characteristics, which enhances the diversity of populations in the late stage of its search and accelerates the convergence speed. Finally, experiments are designed to compare the results in different dimensions, and the final proposed structure achieved a 98.93% classification accuracy, which is better than other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔柜子发布了新的文献求助10
1秒前
1秒前
Ava应助AGRA采纳,获得10
2秒前
RC_Wang应助丫丫采纳,获得10
2秒前
2秒前
丞相完成签到,获得积分10
3秒前
喵喵完成签到 ,获得积分10
3秒前
能干的小赵完成签到,获得积分10
3秒前
hchnb1234完成签到,获得积分10
3秒前
4秒前
5秒前
hchnb1234发布了新的文献求助10
6秒前
林云夕完成签到,获得积分10
6秒前
7秒前
HesperLxy发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
林云夕发布了新的文献求助10
12秒前
RC_Wang应助丫丫采纳,获得10
12秒前
ericlee1984发布了新的文献求助10
13秒前
Owen应助一坨台台采纳,获得10
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
sheny1完成签到,获得积分10
17秒前
温柔柜子发布了新的文献求助10
18秒前
18秒前
科研通AI6.1应助李茉琳采纳,获得10
19秒前
郑泽航发布了新的文献求助10
19秒前
小蘑菇应助HBY采纳,获得10
19秒前
llf完成签到 ,获得积分10
20秒前
LX完成签到,获得积分10
20秒前
科研通AI6.1应助online1881采纳,获得10
20秒前
一坨台台完成签到,获得积分10
21秒前
21秒前
大力元霜完成签到,获得积分10
21秒前
22秒前
牛牛超人发布了新的文献求助20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785393
求助须知:如何正确求助?哪些是违规求助? 5687580
关于积分的说明 15467396
捐赠科研通 4914484
什么是DOI,文献DOI怎么找? 2645216
邀请新用户注册赠送积分活动 1593054
关于科研通互助平台的介绍 1547382