An Exploration into the Fault Diagnosis of Analog Circuits Using Enhanced Golden Eagle Optimized 1D-Convolutional Neural Network (CNN) with a Time-Frequency Domain Input and Attention Mechanism

卷积神经网络 计算机科学 频域 机制(生物学) 时域 断层(地质) 模拟电子学 领域(数学分析) 电子线路 人工神经网络 生物神经网络 人工智能 电子工程 计算机体系结构 机器学习 电气工程 工程类 计算机视觉 数学 地震学 地质学 古生物学 数学分析 哲学 认识论 生物
作者
Jiyuan Gao,Jiang Guo,Fang Yuan,Tongqiang Yi,Fangqing Zhang,Yongjie Shi,Zhaoyang Li,Yiming Ke,Meng Yang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (2): 390-390 被引量:4
标识
DOI:10.3390/s24020390
摘要

With the continuous operation of analog circuits, the component degradation problem gradually comes to the forefront, which may lead to problems, such as circuit performance degradation, system stability reductions, and signal quality degradation, which could be particularly evident in increasingly complex electronic systems. At the same time, due to factors, such as continuous signal transformation, the fluctuation of component parameters, and the nonlinear characteristics of components, traditional fault localization methods are still facing significant challenges when dealing with large-scale complex circuit faults. Based on this, this paper proposes a fault-diagnosis method for analog circuits using the ECWGEO algorithm, an enhanced version of the GEO algorithm, to de-optimize the 1D-CNN with an attention mechanism to handle time–frequency fusion inputs. Firstly, a typical circuit-quad op-amp dual second-order filter circuit is selected to construct a fault-simulation model, and Monte Carlo analysis is used to obtain a large number of samples as the dataset of this study. Secondly, the 1D-CNN network structure is improved for the characteristics of the analog circuits themselves, and the time–frequency domain fusion input is implemented before inputting it into the network, while the attention mechanism is introduced into the network. Thirdly, instead of relying on traditional experience for network structure determination, this paper adopts a parameter-optimization algorithm for network structure optimization and improves the GEO algorithm according to the problem characteristics, which enhances the diversity of populations in the late stage of its search and accelerates the convergence speed. Finally, experiments are designed to compare the results in different dimensions, and the final proposed structure achieved a 98.93% classification accuracy, which is better than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加菲丰丰重新开启了11文献应助
刚刚
CipherSage应助ds采纳,获得10
刚刚
乔宇完成签到,获得积分10
刚刚
简单发布了新的文献求助10
1秒前
深情安青应助芒果采纳,获得10
2秒前
小宇geigei发布了新的文献求助20
3秒前
bluesmile完成签到,获得积分10
5秒前
5秒前
甜乎贝贝完成签到 ,获得积分10
5秒前
strong.quite完成签到,获得积分10
7秒前
李健的粉丝团团长应助AFM采纳,获得10
7秒前
整齐的达发布了新的文献求助10
8秒前
8秒前
xiaoxiaojiang完成签到 ,获得积分10
9秒前
9秒前
星海殇完成签到 ,获得积分0
9秒前
曲书文完成签到,获得积分10
10秒前
ding应助看文献的狗采纳,获得10
10秒前
zwy应助469459442采纳,获得10
13秒前
zhaideqi7发布了新的文献求助50
13秒前
研友_enPJa8发布了新的文献求助10
15秒前
NexusExplorer应助Jm采纳,获得10
16秒前
17秒前
香蕉觅云应助无限尔容采纳,获得10
18秒前
SciGPT应助侃侃采纳,获得10
18秒前
19秒前
简单完成签到,获得积分10
19秒前
kaizt驳回了dodox应助
19秒前
想多睡会儿完成签到,获得积分10
20秒前
20秒前
陈文娜完成签到,获得积分10
21秒前
海上森林的一只猫完成签到 ,获得积分10
22秒前
22秒前
要减肥怀蝶完成签到,获得积分10
22秒前
venihall发布了新的文献求助30
22秒前
甜美鹤应助加菲丰丰采纳,获得10
23秒前
23秒前
Owen应助娇气的伟宸采纳,获得10
23秒前
汉堡包应助DreamRunner0410采纳,获得10
23秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 2000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
錢鍾書楊絳親友書札 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3288932
求助须知:如何正确求助?哪些是违规求助? 2926181
关于积分的说明 8425630
捐赠科研通 2597216
什么是DOI,文献DOI怎么找? 1417085
科研通“疑难数据库(出版商)”最低求助积分说明 659592
邀请新用户注册赠送积分活动 642001