An Exploration into the Fault Diagnosis of Analog Circuits Using Enhanced Golden Eagle Optimized 1D-Convolutional Neural Network (CNN) with a Time-Frequency Domain Input and Attention Mechanism

卷积神经网络 计算机科学 频域 机制(生物学) 时域 断层(地质) 模拟电子学 领域(数学分析) 电子线路 人工神经网络 生物神经网络 人工智能 电子工程 计算机体系结构 机器学习 电气工程 工程类 计算机视觉 数学 地震学 地质学 古生物学 数学分析 哲学 认识论 生物
作者
Jiyuan Gao,Jiang Guo,Fang Yuan,Tongqiang Yi,Fangqing Zhang,Yongjie Shi,Zhaoyang Li,Yiming Ke,Meng Yang
出处
期刊:Sensors [MDPI AG]
卷期号:24 (2): 390-390 被引量:4
标识
DOI:10.3390/s24020390
摘要

With the continuous operation of analog circuits, the component degradation problem gradually comes to the forefront, which may lead to problems, such as circuit performance degradation, system stability reductions, and signal quality degradation, which could be particularly evident in increasingly complex electronic systems. At the same time, due to factors, such as continuous signal transformation, the fluctuation of component parameters, and the nonlinear characteristics of components, traditional fault localization methods are still facing significant challenges when dealing with large-scale complex circuit faults. Based on this, this paper proposes a fault-diagnosis method for analog circuits using the ECWGEO algorithm, an enhanced version of the GEO algorithm, to de-optimize the 1D-CNN with an attention mechanism to handle time–frequency fusion inputs. Firstly, a typical circuit-quad op-amp dual second-order filter circuit is selected to construct a fault-simulation model, and Monte Carlo analysis is used to obtain a large number of samples as the dataset of this study. Secondly, the 1D-CNN network structure is improved for the characteristics of the analog circuits themselves, and the time–frequency domain fusion input is implemented before inputting it into the network, while the attention mechanism is introduced into the network. Thirdly, instead of relying on traditional experience for network structure determination, this paper adopts a parameter-optimization algorithm for network structure optimization and improves the GEO algorithm according to the problem characteristics, which enhances the diversity of populations in the late stage of its search and accelerates the convergence speed. Finally, experiments are designed to compare the results in different dimensions, and the final proposed structure achieved a 98.93% classification accuracy, which is better than other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wanci应助细腻的青采纳,获得50
1秒前
1秒前
Zinia完成签到,获得积分10
2秒前
太渊完成签到 ,获得积分10
4秒前
Litchi完成签到 ,获得积分10
4秒前
沈颖发布了新的文献求助10
4秒前
南枳完成签到 ,获得积分10
5秒前
鲜艳的仙人掌完成签到,获得积分10
6秒前
科目三应助liugm采纳,获得10
6秒前
常青叶发布了新的文献求助10
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
籽儿完成签到,获得积分10
9秒前
9秒前
yzm完成签到,获得积分10
9秒前
Jason完成签到,获得积分20
9秒前
Zilong864完成签到,获得积分10
10秒前
10秒前
11秒前
HongMou完成签到,获得积分10
11秒前
aurevoir完成签到,获得积分10
11秒前
12秒前
志龙发布了新的文献求助10
12秒前
12秒前
13秒前
Luca发布了新的文献求助10
13秒前
Jason发布了新的文献求助10
13秒前
13秒前
ZZZ发布了新的文献求助10
13秒前
小明完成签到,获得积分10
14秒前
香蕉蕉完成签到,获得积分10
14秒前
14秒前
田様应助卢lsl采纳,获得10
14秒前
wwh666888完成签到,获得积分10
14秒前
hkmk完成签到,获得积分10
14秒前
慕青应助AAAA壮采纳,获得10
15秒前
15秒前
NexusExplorer应助夜半芜凉采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660323
求助须知:如何正确求助?哪些是违规求助? 4833206
关于积分的说明 15090227
捐赠科研通 4818974
什么是DOI,文献DOI怎么找? 2578909
邀请新用户注册赠送积分活动 1533480
关于科研通互助平台的介绍 1492243