亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rapid wildfire damage estimation using integrated object-based classification with auto-generated training samples from Sentinel-2 imagery on Google Earth Engine

可转让性 归一化差异植被指数 随机森林 基于对象 卫星图像 遥感 像素 环境科学 计算机科学 地图学 地理 人工智能 机器学习 气候变化 地质学 海洋学 罗伊特
作者
Almo Senja Kulinan,Younghyun Cho,Minsoo Park,Seunghee Park
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:126: 103628-103628 被引量:7
标识
DOI:10.1016/j.jag.2023.103628
摘要

Satellite data are essential during wildfires for understanding its adverse effects and improving the effectiveness of rapid disaster management. However, existing techniques used for damage assessments are inaccurate and lack automation. In this study, we propose an integrated machine learning approach with auto-generated training samples for a rapid wildfire disaster response framework using Sentinel-2 imagery at 10 m resolution from Google Earth Engine (GEE). First, training samples of burned areas were obtained by utilizing textural data based on features that had changed because of the wildfire, and samples of unburned areas were obtained using the normalized difference vegetation index (NDVI). The images were categorized as burned and unburned images using the object-based image analysis (OBIA) classification method. Finally, using the classified maps, burn severity maps and estimated pixel counts for each severity class were generated and compared. The proposed method was implemented to put out a wildfire that broke out in Uljin, Gyeongsangbuk-do, South Korea in March 2022 and the transferability of the model was evaluated in Gangneung, Gangwon-do, South Korea. The study findings indicate that the random forest (RF) classifier acquired the greatest overall accuracy (OA) of 97.6 % in Uljin; additionally, the model transferability performed well in Gangneung with an OA of 93.8 %. The RF also generated the fewest pixels of the unchanged class when the burn severity map was evaluated. Overall, our study proposes a quick and automated approach for estimating wildfire damage that could be used for immediate mitigation actions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
44秒前
51秒前
1分钟前
1分钟前
一二完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
昒冥完成签到,获得积分10
1分钟前
1437594843完成签到 ,获得积分10
2分钟前
昒冥发布了新的文献求助10
2分钟前
ph完成签到 ,获得积分10
2分钟前
Kapur发布了新的文献求助100
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Kapur完成签到,获得积分10
3分钟前
3分钟前
科目三应助涂烁采纳,获得30
3分钟前
3分钟前
pp完成签到,获得积分10
4分钟前
4分钟前
科目三应助ZXX采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
ZXX发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
小蘑菇应助pp采纳,获得10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743751
什么是DOI,文献DOI怎么找? 1505215
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694867