Rapid wildfire damage estimation using integrated object-based classification with auto-generated training samples from Sentinel-2 imagery on Google Earth Engine

可转让性 归一化差异植被指数 随机森林 基于对象 卫星图像 遥感 像素 环境科学 计算机科学 地图学 地理 人工智能 机器学习 气候变化 地质学 罗伊特 海洋学
作者
Almo Senja Kulinan,Younghyun Cho,Minsoo Park,Seunghee Park
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:126: 103628-103628 被引量:7
标识
DOI:10.1016/j.jag.2023.103628
摘要

Satellite data are essential during wildfires for understanding its adverse effects and improving the effectiveness of rapid disaster management. However, existing techniques used for damage assessments are inaccurate and lack automation. In this study, we propose an integrated machine learning approach with auto-generated training samples for a rapid wildfire disaster response framework using Sentinel-2 imagery at 10 m resolution from Google Earth Engine (GEE). First, training samples of burned areas were obtained by utilizing textural data based on features that had changed because of the wildfire, and samples of unburned areas were obtained using the normalized difference vegetation index (NDVI). The images were categorized as burned and unburned images using the object-based image analysis (OBIA) classification method. Finally, using the classified maps, burn severity maps and estimated pixel counts for each severity class were generated and compared. The proposed method was implemented to put out a wildfire that broke out in Uljin, Gyeongsangbuk-do, South Korea in March 2022 and the transferability of the model was evaluated in Gangneung, Gangwon-do, South Korea. The study findings indicate that the random forest (RF) classifier acquired the greatest overall accuracy (OA) of 97.6 % in Uljin; additionally, the model transferability performed well in Gangneung with an OA of 93.8 %. The RF also generated the fewest pixels of the unchanged class when the burn severity map was evaluated. Overall, our study proposes a quick and automated approach for estimating wildfire damage that could be used for immediate mitigation actions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
111完成签到,获得积分10
1秒前
研友_ZegMrL完成签到,获得积分10
1秒前
程程发布了新的文献求助10
3秒前
方断秋完成签到,获得积分10
4秒前
茅十八完成签到,获得积分10
5秒前
qvb完成签到 ,获得积分10
5秒前
Fengzhen007完成签到,获得积分10
6秒前
银玥发布了新的文献求助10
7秒前
烟花应助面壁的章北海采纳,获得10
8秒前
澎湃完成签到,获得积分10
8秒前
哈哈李完成签到,获得积分10
8秒前
8秒前
9秒前
罚克由尔完成签到,获得积分0
10秒前
10秒前
hadern发布了新的文献求助10
11秒前
縤雨完成签到 ,获得积分10
12秒前
lllllllll完成签到,获得积分10
13秒前
Null完成签到,获得积分10
13秒前
邢哥哥完成签到,获得积分10
13秒前
H-kevin.完成签到,获得积分10
14秒前
15秒前
15秒前
明理夏槐完成签到,获得积分10
15秒前
15秒前
临在完成签到,获得积分10
16秒前
程程发布了新的文献求助10
16秒前
白开水完成签到,获得积分10
16秒前
16秒前
畅快的长颈鹿完成签到,获得积分10
16秒前
柒柒完成签到,获得积分10
16秒前
17秒前
Q清风慕竹完成签到,获得积分10
17秒前
烟花应助hadern采纳,获得10
18秒前
Snowy完成签到,获得积分10
18秒前
英俊的铭应助lm采纳,获得10
18秒前
cxt完成签到,获得积分10
18秒前
DaleG发布了新的文献求助50
19秒前
行xxx发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315521
求助须知:如何正确求助?哪些是违规求助? 4458122
关于积分的说明 13868815
捐赠科研通 4347706
什么是DOI,文献DOI怎么找? 2387910
邀请新用户注册赠送积分活动 1382049
关于科研通互助平台的介绍 1351379