Rapid wildfire damage estimation using integrated object-based classification with auto-generated training samples from Sentinel-2 imagery on Google Earth Engine

可转让性 归一化差异植被指数 随机森林 基于对象 卫星图像 遥感 像素 环境科学 计算机科学 地图学 地理 人工智能 机器学习 气候变化 地质学 海洋学 罗伊特
作者
Almo Senja Kulinan,Younghyun Cho,Minsoo Park,Seunghee Park
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:126: 103628-103628 被引量:7
标识
DOI:10.1016/j.jag.2023.103628
摘要

Satellite data are essential during wildfires for understanding its adverse effects and improving the effectiveness of rapid disaster management. However, existing techniques used for damage assessments are inaccurate and lack automation. In this study, we propose an integrated machine learning approach with auto-generated training samples for a rapid wildfire disaster response framework using Sentinel-2 imagery at 10 m resolution from Google Earth Engine (GEE). First, training samples of burned areas were obtained by utilizing textural data based on features that had changed because of the wildfire, and samples of unburned areas were obtained using the normalized difference vegetation index (NDVI). The images were categorized as burned and unburned images using the object-based image analysis (OBIA) classification method. Finally, using the classified maps, burn severity maps and estimated pixel counts for each severity class were generated and compared. The proposed method was implemented to put out a wildfire that broke out in Uljin, Gyeongsangbuk-do, South Korea in March 2022 and the transferability of the model was evaluated in Gangneung, Gangwon-do, South Korea. The study findings indicate that the random forest (RF) classifier acquired the greatest overall accuracy (OA) of 97.6 % in Uljin; additionally, the model transferability performed well in Gangneung with an OA of 93.8 %. The RF also generated the fewest pixels of the unchanged class when the burn severity map was evaluated. Overall, our study proposes a quick and automated approach for estimating wildfire damage that could be used for immediate mitigation actions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
柒号完成签到,获得积分10
1秒前
1秒前
汉堡包应助自由的小鸟采纳,获得10
1秒前
2秒前
冬冬林完成签到,获得积分10
2秒前
Pikno123完成签到,获得积分10
2秒前
2秒前
情怀应助Leeyee采纳,获得10
2秒前
平常的班完成签到,获得积分10
2秒前
lv发布了新的文献求助10
2秒前
3秒前
Alex发布了新的文献求助10
3秒前
dani_tian完成签到,获得积分10
3秒前
吹吹发布了新的文献求助10
3秒前
shao应助lalala采纳,获得10
3秒前
4秒前
4秒前
学术乌贼完成签到,获得积分10
4秒前
继往开来应助等等采纳,获得20
4秒前
乐观的含蕾完成签到,获得积分10
5秒前
眼睛大眼睛完成签到,获得积分10
5秒前
Lily发布了新的文献求助10
5秒前
情怀应助开朗网络采纳,获得10
6秒前
认真谷雪完成签到,获得积分10
6秒前
6秒前
曹晓龙发布了新的文献求助10
6秒前
FAN发布了新的文献求助10
6秒前
6秒前
汉堡包应助钱超采纳,获得10
7秒前
7秒前
8秒前
源源元发布了新的文献求助10
9秒前
yznfly应助洛苏采纳,获得30
9秒前
局内人发布了新的文献求助10
9秒前
彩色焦完成签到,获得积分10
9秒前
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952008
求助须知:如何正确求助?哪些是违规求助? 3497414
关于积分的说明 11087298
捐赠科研通 3228031
什么是DOI,文献DOI怎么找? 1784626
邀请新用户注册赠送积分活动 868824
科研通“疑难数据库(出版商)”最低求助积分说明 801198