Permutation Entropy Does Not Track the Electroencephalogram-Related Manifestations of Paradoxical Excitation During Propofol-Induced Loss of Responsiveness: Results From a Prospective Observational Cohort Study

医学 异丙酚 前瞻性队列研究 观察研究 队列研究 麻醉 内科学
作者
Julian Ostertag,Robert Zanner,Gerhard Schneider,Matthias Kreuzer
出处
期刊:Anesthesia & Analgesia [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1213/ane.0000000000006919
摘要

BACKGROUND: During the anesthetic-induced loss of responsiveness (LOR), a “paradoxical excitation” with activation of β-frequencies in the electroencephalogram (EEG) can be observed. Thus, spectral parameters—as widely used in commercial anesthesia monitoring devices—may mistakenly indicate that patients are awake when they are actually losing responsiveness. Nonlinear time-domain parameters such as permutation entropy (PeEn) may analyze additional EEG information and appropriately reflect the change in cognitive state during the transition. Determining which parameters correctly track the level of anesthesia is essential for designing monitoring algorithms but may also give valuable insight regarding the signal characteristics during state transitions. METHODS: EEG data from 60 patients who underwent general anesthesia were extracted and analyzed around LOR. We derived the following information from the power spectrum: (i) spectral band power, (ii) the spectral edge frequency as well as 2 parameters known to be incorporated in monitoring systems, (iii) beta ratio, and (iv) spectral entropy. We also calculated (v) PeEn as a time-domain parameter. We used Friedman’s test and Bonferroni correction to track how the parameters change over time and the area under the receiver operating curve to separate the power spectra between time points. RESULTS: Within our patient collective, we observed a “paradoxical excitation” around the time of LOR as indicated by increasing beta-band power. Spectral edge frequency and spectral entropy values increased from 19.78 [10.25–34.18] Hz to 25.39 [22.46–30.27] Hz ( P = .0122) and from 0.61 [0.54–0.75] to 0.77 [0.64–0.81] ( P < .0001), respectively, before LOR, indicating a (paradoxically) higher level of high-frequency activity. PeEn and beta ratio values decrease from 0.78 [0.77–0.82] to 0.76 [0.73–0.81] ( P < .0001) and from −0.74 [−1.14 to −0.09] to −2.58 [−2.83 to −1.77] ( P < .0001), respectively, better reflecting the state transition into anesthesia. CONCLUSIONS: PeEn and beta ratio seem suitable parameters to monitor the state transition during anesthesia induction. The decreasing PeEn values suggest a reduction of signal complexity and information content, which may very well describe the clinical situation at LOR. The beta ratio mainly focuses on the loss of power in the gamma-band. PeEn, in particular, may present a single parameter capable of tracking the LOR transition without being affected by paradoxical excitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weiwei04314完成签到,获得积分10
1秒前
2秒前
dghcmh完成签到,获得积分10
2秒前
2秒前
3秒前
搬砖打工人完成签到,获得积分10
3秒前
脑洞疼应助飘逸灵珊采纳,获得10
5秒前
李昊搏发布了新的文献求助10
5秒前
Zh关闭了Zh文献求助
5秒前
5秒前
6秒前
paparazzi221应助加菲丰丰采纳,获得50
6秒前
暖阳完成签到 ,获得积分10
7秒前
BETCHA完成签到,获得积分10
7秒前
CipherSage应助阳光的映梦采纳,获得10
8秒前
9秒前
9秒前
Ganlou发布了新的文献求助10
10秒前
科研通AI2S应助qigechengzi采纳,获得10
11秒前
11秒前
11秒前
12秒前
大模型应助Qingcyx采纳,获得10
13秒前
偷小新的蜡笔完成签到 ,获得积分10
13秒前
犹豫松鼠完成签到,获得积分10
14秒前
ooseabiscuit发布了新的文献求助10
14秒前
完蛋发布了新的文献求助10
15秒前
薰硝壤应助尊敬的人达采纳,获得30
15秒前
小嘎完成签到 ,获得积分10
16秒前
16秒前
胡里奥完成签到 ,获得积分10
17秒前
彼岸发布了新的文献求助30
17秒前
ezreal完成签到,获得积分10
18秒前
18秒前
18秒前
李健应助SCI著名作者SCT采纳,获得10
19秒前
香蕉觅云应助SONG采纳,获得10
19秒前
19秒前
19秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135818
求助须知:如何正确求助?哪些是违规求助? 2786651
关于积分的说明 7778773
捐赠科研通 2442821
什么是DOI,文献DOI怎么找? 1298711
科研通“疑难数据库(出版商)”最低求助积分说明 625212
版权声明 600866