材料科学
复合材料
电介质
碳纳米管
弹性体
碳纤维
复合数
光电子学
作者
Ying‐Jie Ma,Jingwen Wang,Jianbao Yang,Zilong Zhang,Yang Zhang,Mingyue Zhang,Tao Liang
摘要
Abstract The inherent balance between dielectric constant and loss restricts the actual usage of dielectric elastomer actuators with high actuation strains, proposing a method that can break this trade‐off has been an urgent query. In this work, silica‐loaded carbon nanotubes (called SiO 2 @CNT) were prepared as dopants for acrylic resin elastomers (abbreviated as ARE) using the sol–gel method, and the obtained SiO 2 @CNT/ARE composites reached a dielectric constant of 282.5 at 100 Hz at a filler content of 3.22 vol%, which is 86 times higher than that of the pure ARE, whereas the dielectric loss remains at 0.17. The equilibrium between dielectric constant and loss is broken mainly based on the loading of SiO 2 which inhibits the formation of carbon nanotube conductive network and concurrently reinforces the compatibility of the filler with ARE. Such a design offers a generalizable strategy for the subsequent preparation of polymer‐based composite films with excellent dielectric properties. Highlights Preparation of fillers with excellent dispersibility in the organic phase. The ARE‐based composites exhibit excellent dielectric properties at 100 Hz. The mechanism of increase in dielectric constant is explained using two models.
科研通智能强力驱动
Strongly Powered by AbleSci AI