High Tribocatalytic Performance of FeOOH Nanorods for Degrading Organic Dyes and Antibiotics

纳米棒 罗丹明B 抗生素 甲基橙 催化作用 化学工程 盐酸四环素 亚甲蓝 化学 纳米技术 材料科学 核化学 光催化 有机化学 四环素 生物化学 工程类
作者
Shiyu Sun,Xiaohui Sui,Haimiao Yu,Ying Zheng,Xiaoting Zhu,Xinyan Wu,Yanqiang Li,Lin Qing,Yongcheng Zhang,Wanneng Ye,Yanna Liang
出处
期刊:Small methods [Wiley]
卷期号:8 (12): e2301784-e2301784 被引量:23
标识
DOI:10.1002/smtd.202301784
摘要

Abstract Tribocatalysis is vitally important for electrochemistry, energy conservation, and water treatment. Exploring eco‐friendly and low‐cost tribocatalysts with high performance is crucial for practical applications. Here, the highly efficient tribocatalytic performance of FeOOH nanorods is reported. The factors related to the tribocatalytic activity such as nanorod diameter, surface area, and surface roughness are investigated, and the diameter of the FeOOH nanorods is found to have a significant effect on their tribocatalytic performance. As a result, under ultrasonic excitation, the optimized FeOOH nanorods exhibit superior tribocatalytic degradation toward rhodamine B (RhB), acid orange 7, methylene blue, methyl orange dyes, and their mixture. The RhB and mixed dyes are effectively degraded within 20 min ( k = 0.179 min −1 ) and 35 min ( k = 0.089 min −1 ), respectively, with the FeOOH nanorods showing excellent reusability. Moreover, antibiotics, such as tetracycline hydrochloride, phenol, and bisphenol A are efficiently degraded. Investigation of the catalytic mechanism reveals that the friction‐generated h + as well as these yielded •OH and •O 2 − active radicals participate in the catalytic reaction. This work not only shed light on the design of high‐performance tribocatalyst but also demonstrates that by harvesting mechanical energy, the FeOOH nanorods are promising materials for removing organic contaminants in wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助lllyyy采纳,获得10
刚刚
3秒前
煎蛋关注了科研通微信公众号
3秒前
我是老大应助likke采纳,获得10
4秒前
JamesPei应助xing采纳,获得10
4秒前
9秒前
chiech发布了新的文献求助10
9秒前
11235完成签到,获得积分10
10秒前
PU聚氨酯完成签到,获得积分10
10秒前
椎名理央完成签到,获得积分10
10秒前
niceday123完成签到,获得积分10
11秒前
你好关注了科研通微信公众号
11秒前
haha发布了新的文献求助10
13秒前
追寻无施完成签到,获得积分10
15秒前
大模型应助着急的棉花糖采纳,获得10
15秒前
123yyaa发布了新的文献求助10
15秒前
16秒前
huang完成签到,获得积分10
16秒前
16秒前
18秒前
糖果不甜完成签到,获得积分10
18秒前
无花果应助婷婷采纳,获得10
19秒前
20秒前
Akim应助刘佳慧采纳,获得10
22秒前
22秒前
尹天奇发布了新的文献求助10
22秒前
22秒前
田様应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
ccm应助科研通管家采纳,获得20
25秒前
Owen应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
huang发布了新的文献求助10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
上官若男应助科研通管家采纳,获得20
25秒前
烟花应助科研通管家采纳,获得10
25秒前
所所应助科研通管家采纳,获得10
25秒前
终梦应助科研通管家采纳,获得30
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288354
求助须知:如何正确求助?哪些是违规求助? 4440235
关于积分的说明 13824120
捐赠科研通 4322496
什么是DOI,文献DOI怎么找? 2372594
邀请新用户注册赠送积分活动 1368040
关于科研通互助平台的介绍 1331818