亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FSNA: Few-Shot Object Detection via Neighborhood Information Adaption and All Attention

计算机科学 目标检测 计算机视觉 对象(语法) 人工智能 弹丸 模式识别(心理学) 有机化学 化学
作者
Jinxiang Zhu,Qi Wang,Xinyu Dong,Weijian Ruan,Haolin Chen,Liang Lei,Ge‐Fei Hao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7121-7134 被引量:1
标识
DOI:10.1109/tcsvt.2024.3370600
摘要

Few-shot object detection (FSOD), a formidable task centered around developing inclusive models with annotated constrained samples, has attracted increasing interest in recent years. This discipline addresses unbalanced data distributions, which are particularly relevant to authentic scenarios. Although recent FSOD efforts have achieved considerable success in terms of localization, recognition remains a formidable obstacle. This stems from the fact that typical FSOD models evolve from general object detection frameworks predicated on extensive training data, and they underutilize and mine data information in scenarios with restricted samples, resulting in subpar performance. To address this deficiency, we introduce a groundbreaking methodology that is specifically tailored to overcome the inadequate sample challenge in FSOD tasks. Our approach incorporates a neighborhood information adaption (NIA) module that is designed to dynamically utilize information near the target, assisting in robustly performing object identification within the target domain. In addition, we propose an innovative attention mechanism called all attention, which not only encapsulates the dependencies of each position within a single feature map but also leverages correlations with other feature maps. This methodology culminates in more refined feature representations, which are particularly advantageous in situations with limited data. Comprehensive experiments conducted on the PASCAL VOC and COCO datasets illustrate that our technique achieves a substantial improvement with regard to addressing the FSOD task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
48秒前
SciGPT应助Jenny采纳,获得10
58秒前
豆豆完成签到,获得积分10
1分钟前
bzdjsmw完成签到 ,获得积分10
1分钟前
1分钟前
RLLLLLLL完成签到 ,获得积分10
1分钟前
严珍珍完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
3分钟前
puzhongjiMiQ完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
高大厉完成签到 ,获得积分10
4分钟前
4分钟前
云缘之芒完成签到,获得积分10
4分钟前
科研通AI2S应助芝芝采纳,获得10
5分钟前
5分钟前
Jenny发布了新的文献求助10
5分钟前
英俊的铭应助云缘之芒采纳,获得10
5分钟前
情怀应助Jenny采纳,获得10
5分钟前
5分钟前
冬去春来完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
白华苍松发布了新的文献求助10
6分钟前
Ava应助sing采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
sing发布了新的文献求助10
7分钟前
puzhongjiMiQ发布了新的文献求助10
7分钟前
7分钟前
英俊的铭应助科研通管家采纳,获得10
7分钟前
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3360076
求助须知:如何正确求助?哪些是违规求助? 2982627
关于积分的说明 8704599
捐赠科研通 2664401
什么是DOI,文献DOI怎么找? 1459035
科研通“疑难数据库(出版商)”最低求助积分说明 675397
邀请新用户注册赠送积分活动 666421