Exploring the ferroptosis-related gene lipocalin 2 as a potential biomarker for sepsis-induced acute respiratory distress syndrome based on machine learning

急性呼吸窘迫 脂质运载蛋白 败血症 生物标志物 呼吸窘迫 基因 医学 重症监护医学 计算生物学 免疫学 生物信息学 生物 内科学 遗传学 外科
作者
Jiayi Zhan,Junming Chen,Liyan Deng,Yining Lu,Lianxiang Luo
出处
期刊:Biochimica Et Biophysica Acta: Molecular Basis Of Disease [Elsevier BV]
卷期号:1870 (4): 167101-167101 被引量:6
标识
DOI:10.1016/j.bbadis.2024.167101
摘要

Sepsis is a major cause of mortality in patients, and ARDS is one of the most common outcomes. The pathophysiology of acute respiratory distress syndrome (ARDS) caused by sepsis is significantly impacted by genes related to ferroptosis. In this study, Weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) networks, functional enrichment analysis, and machine learning were employed to identify characterized genes and to construct receiver operating characteristic (ROC) curves. Additionally, DNA methylation levels were quantified and single-cell analysis was conducted. To validate the alterations in the expression of Lipocalin-2 (LCN2) and ferroptosis-related proteins in the in vitro model, Western blotting was carried out, and the changes in intracellular ROS and Fe2+ levels were detected. A combination of eight machine learning algorithms, including RFE, LASSO, RandomForest, SVM-RFE, GBDT, Bagging, XGBoost, and Boruta, were used with a machine learning model to highlight the significance of LCN2 as a key gene in sepsis-induced ARDS. Analysis of immune cell infiltration showed a positive correlation between neutrophils and LCN2. In a cell model induced by LPS, it was found that Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, was able to reverse the expression of LCN2. Knocking down LCN2 in BEAS-2B cells reversed the LPS-induced lipid peroxidation, Fe2+ levels, ACSL4, and GPX4 levels, indicating that LCN2, a ferroptosis-related gene (FRG), plays a crucial role in mediating ferroptosis. Upon establishing an FRG model for individuals with sepsis-induced ARDS, we determined that LCN2 could be a dependable marker for predicting survival in these patients. This finding provides a basis for more accurate ARDS diagnosis and the exploration of innovative treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
烂漫的雅容完成签到,获得积分10
3秒前
yuan完成签到,获得积分10
3秒前
4秒前
4秒前
Rafa完成签到,获得积分10
4秒前
陶醉的不愁完成签到,获得积分20
4秒前
Zq发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
李健的小迷弟应助wenhuan采纳,获得10
5秒前
6秒前
汉堡包应助Zyq采纳,获得10
6秒前
星辰大海应助坚强傲晴采纳,获得10
6秒前
wqm完成签到,获得积分10
6秒前
7秒前
yjh124发布了新的文献求助10
7秒前
赘婿应助emmaguo713采纳,获得10
7秒前
8秒前
拥你入怀发布了新的文献求助20
8秒前
8秒前
haibing发布了新的文献求助10
9秒前
单薄芹菜完成签到,获得积分10
10秒前
王振军发布了新的文献求助10
10秒前
zjnuyangfa完成签到,获得积分10
10秒前
11秒前
11秒前
isis完成签到,获得积分10
11秒前
11秒前
chenzi发布了新的文献求助10
11秒前
12秒前
LL发布了新的文献求助10
13秒前
大模型应助陈一晨采纳,获得10
13秒前
饱满的小猫咪完成签到 ,获得积分10
13秒前
传奇3应助耶耶采纳,获得10
13秒前
吃书的猪完成签到,获得积分10
14秒前
PualYoung发布了新的文献求助10
14秒前
14秒前
小罗同学发布了新的文献求助10
15秒前
赵哥发布了新的文献求助10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3658707
求助须知:如何正确求助?哪些是违规求助? 3220706
关于积分的说明 9737132
捐赠科研通 2929876
什么是DOI,文献DOI怎么找? 1604142
邀请新用户注册赠送积分活动 757000
科研通“疑难数据库(出版商)”最低求助积分说明 734269