In this work, sequential incipient wetness impregnation method was used to synthesize Cu/Al2O3, Cu/Na2O/Al2O3 and Cu/CaO/Al2O3 catalysts in different compositions for CO2 conversion to value-added products. Synthesized catalysts were characterized using various analytical techniques and their performances for CO2 catalytic conversion were tested in a high-pressure packed bed reactor under reaction conditions of P = 60 bars, T = 300 oC, and H2/CO2 = 3. The obtained results revealed that the type of adsorbent had a significant impact on CO2 conversion, with CaO-containing catalyst being more efficient for methanol selectivity. Increased Cu content from 10 wt.% to 30 wt.% with fixed CaO content of 10 wt. % resulted in a small increase in CO2 conversion where the highest CO2 conversion of 16.44% and the highest methanol selectivity (17.75%) were obtained for catalyst containing 20 wt.% of copper. The best performing catalyst was further promoted using 0.5 wt% Rh promoter which improved both methanol selectivity and space time yield to 23.2% and 0.08 gMeOHgcat-1h-1, respectively. The comparative high performance of the Rh-promoted catalyst was attributed to smaller metal oxide particle size with uniform dispersion, presence of effective hydrogen spill over, moderate basic sites, surface defects and presence of induced copper species.