海湾
城市化
土地覆盖
栖息地
栖息地破坏
生态系统
土地利用
环境退化
土地退化
地理
环境科学
污染
环境资源管理
生态学
生物
考古
作者
Yufan Wu,Jiangbo Wang,Aiping Gou
标识
DOI:10.1016/j.scitotenv.2024.171263
摘要
Since the 20th century, the global urbanization has led to a series of pollution issues, posing a severe threat to the habitat quality of human habitat. The quality of habitat determines whether ecosystems can provide suitable living conditions for humans and other species. Therefore, systematic study of the habitat quality is essential for the maintenance of sustainable development. In this study, we coupled models such as SD, InVEST and PLUS with a series of indicators to analyze the characteristics of land cover and habitat quality evolution in the Guangdong-HongKong-Macao Greater Bay Area (GBA) from 2000 to 2020 and deconstruct the driving mechanisms of habitat quality. Then simulate the evolution of land cover and habitat quality under different scenarios in 2030. The results show that: 1) Over the historical research period, the GBA exhibited "rapid expansion of artificial surfaces and rapid shrinkage of ecological land". Artificial surfaces increased by approximately 4878.95km2,while ecological land, such as agricultural land, decreased by about 3095.93km2.2) The degradation of habitat quality gradually accelerated and the habitat quality was characterized by "stepwise decline from the periphery to the interior", which was directly related to the land cover changes brought about by the topographic gradient effect in the Bay Area.3) Pollution control driven by environmental investments has had a moderating effect on habitat degradation, but it has not been able to change the overall degradation trend. 4) Scenario analysis suggests that future habitat quality in the GBA will degrade to a certain extent due to the impact of artificial surface expansion. We deduce that this will affect the structure of the city's ecological network as well as the conservation function of the ecological zones. This study provides a scientific basis for understanding the historical and future trends of habitat quality in the GBA, offering new insights into the intrinsic driving mechanisms of habitat quality. It also provides a theoretical support for relevant authorities to undertake sustainable development initiatives.
科研通智能强力驱动
Strongly Powered by AbleSci AI