Postoperative atrial fibrillation (POAF) after cardiac surgery: clinical practice review

医学 心房颤动 胺碘酮 围手术期 心脏外科 心脏病学 内科学 心包切除术 导管消融 冲程(发动机) 麻醉 心包 机械工程 工程类
作者
Orlando R. Suero,Ahmed K. Ali,Lauren R Barron,Matthew W. Segar,Marc R. Moon,Subhasis Chatterjee
出处
期刊:Journal of Thoracic Disease [AME Publishing Company]
卷期号:16 (2): 1503-1520 被引量:3
标识
DOI:10.21037/jtd-23-1626
摘要

: Postoperative atrial fibrillation (POAF) after cardiac surgery is associated with elevated morbidity and mortality. Although current prediction models have limited efficacy, several perioperative interventions can reduce patients’ risk of POAF. These begin with preoperative medications, including beta-blockers and amiodarone. Moreover, patients should be screened for preexisting atrial fibrillation (AF) so that concomitant surgical ablation and left atrial appendage occlusion can be performed in appropriate candidates. Intraoperative interventions such as posterior pericardiectomy can reduce mediastinal fluid accumulation, which is a trigger for POAF. Furthermore, many preventive strategies for POAF are implemented in the immediate postoperative period. Initiating beta-blockers, amiodarone, or both is reasonable for most patients. Overdrive atrial pacing, colchicine, and steroids have been used by some, although the evidence base is less robust. For patients with POAF, rate-control and rhythm-control strategies have comparable outcomes. Decision-making regarding anticoagulation should recognize that the stroke risk associated with POAF appears to be lower than that for general nonvalvular AF. The evidence that oral anticoagulation reduces stroke risk is less clear for POAF patients than for patients with general nonvalvular AF. Given that POAF tends to be shorter-lived and is associated with greater bleeding risks in the perioperative period, decisions regarding anticoagulation should be individualized. Finally, wearable technology and machine learning algorithms for better predicting and managing POAF appear to be coming soon. These technologies and a comprehensive clinical program could meaningfully reduce the incidence of this common complication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ray完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助狐狐采纳,获得10
2秒前
小谢发布了新的文献求助10
4秒前
KLM完成签到,获得积分10
5秒前
朵啦诶萌完成签到,获得积分10
5秒前
7秒前
小熊完成签到,获得积分10
9秒前
8R60d8应助aaaacc采纳,获得10
9秒前
11完成签到 ,获得积分10
10秒前
12秒前
科目三应助登山人采纳,获得10
13秒前
小李爱吃梨完成签到 ,获得积分10
16秒前
16秒前
Jennifer发布了新的文献求助10
21秒前
香蕉觅云应助咎思远采纳,获得10
22秒前
WEI完成签到,获得积分10
22秒前
23秒前
李健的小迷弟应助心杨采纳,获得10
25秒前
修仙应助科研通管家采纳,获得10
26秒前
Akim应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
Jasper应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
Lucas应助科研通管家采纳,获得10
26秒前
27秒前
科研通AI2S应助卡卡罗特采纳,获得10
28秒前
28秒前
LC完成签到 ,获得积分10
28秒前
tannie完成签到 ,获得积分10
28秒前
木头人呐完成签到,获得积分10
29秒前
29秒前
完美世界应助小只采纳,获得10
29秒前
王灿灿发布了新的文献求助10
31秒前
杨杨完成签到 ,获得积分10
31秒前
咎思远完成签到,获得积分10
32秒前
研友_VZG7GZ应助喜悦念柏采纳,获得10
33秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157464
求助须知:如何正确求助?哪些是违规求助? 2808880
关于积分的说明 7878772
捐赠科研通 2467260
什么是DOI,文献DOI怎么找? 1313299
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919