亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Uncertainty-Aware Hierarchical Aggregation Network for Medical Image Segmentation

图像分割 计算机科学 人工智能 图像(数学) 计算机视觉 图像处理 分割 图像纹理 模式识别(心理学)
作者
Tao Zhou,Yi Zhou,Guangyu Li,Geng Chen,Jianbing Shen
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (8): 7440-7453 被引量:2
标识
DOI:10.1109/tcsvt.2024.3370685
摘要

Medical image segmentation is an essential process to assist clinics with computer-aided diagnosis and treatment. Recently, a large amount of convolutional neural network (CNN)-based methods have been rapidly developed and achieved remarkable performances in several different medical image segmentation tasks. However, the same type of infected region or lesions often has a diversity of scales, making it a challenging task to achieve accurate medical image segmentation. In this paper, we present a novel Uncertainty-aware Hierarchical Aggregation Network, namely UHA-Net, for medical image segmentation, which can fully make utilization of cross-level and multi-scale features to handle scale variations. Specifically, we propose a hierarchical feature fusion (HFF) module to aggregate high-level features, which is used to produce a global map for the coarse localization of the segmented target. Then, we propose an uncertainty-induced cross-level fusion (UCF) module to fully fuse features from the adjacent levels, which can learn knowledge guidance to capture the contextual information from adjacent resolutions. Further, a scale aggregation module (SAM) is presented to learn multi-scale features by using different convolution kernels, to effectively deal with scale variations. At last, we formulate a unified framework to simultaneously fuse inter-layer convolutional features and learn the discriminability of multi-scale representations from the intra-layer features, leading to accurate segmentation results. We carry out experiments on three different medical image segmentation tasks, and the results demonstrate that our UHA-Net outperforms state-of-the-art segmentation methods. Our implementation code and segmentation maps will be publicly at https://github.com/taozh2017/UHANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ldysaber完成签到,获得积分0
5秒前
赘婿应助離原采纳,获得10
9秒前
10秒前
spark810应助科研通管家采纳,获得150
13秒前
不复返的杆完成签到 ,获得积分10
16秒前
lzx发布了新的文献求助10
40秒前
子衿完成签到 ,获得积分10
44秒前
淡淡妙竹完成签到 ,获得积分10
52秒前
1分钟前
Jasper应助timick采纳,获得10
1分钟前
1分钟前
FengGo完成签到,获得积分10
1分钟前
哇呀呀完成签到 ,获得积分10
1分钟前
隐形曼青应助zmr123采纳,获得10
1分钟前
小怪完成签到,获得积分10
1分钟前
Yuying完成签到 ,获得积分10
2分钟前
2分钟前
baiyixuan发布了新的文献求助20
2分钟前
Kevin完成签到,获得积分10
2分钟前
zmr123发布了新的文献求助10
2分钟前
风趣的茹嫣完成签到 ,获得积分10
2分钟前
2分钟前
WN发布了新的文献求助10
2分钟前
春鸮鸟完成签到 ,获得积分10
2分钟前
WN完成签到,获得积分10
2分钟前
充电宝应助baiyixuan采纳,获得10
2分钟前
2分钟前
Tundrawf完成签到 ,获得积分10
2分钟前
離原发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Cynthia发布了新的文献求助10
2分钟前
2分钟前
年轻大楚发布了新的文献求助10
2分钟前
Yamaljenkins发布了新的文献求助10
2分钟前
汉德萌多林完成签到,获得积分10
3分钟前
Lucas应助野椒搞科研采纳,获得10
3分钟前
zho关闭了zho文献求助
3分钟前
蔓越莓发布了新的文献求助10
3分钟前
蔓越莓完成签到,获得积分10
3分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294412
求助须知:如何正确求助?哪些是违规求助? 2930341
关于积分的说明 8445942
捐赠科研通 2602598
什么是DOI,文献DOI怎么找? 1420666
科研通“疑难数据库(出版商)”最低求助积分说明 660559
邀请新用户注册赠送积分活动 643433