Dynamic Effective Connectivity Learning Based on Nonparametric State Estimation and GAN

计算机科学 动态功能连接 鉴别器 人工智能 参数统计 模式识别(心理学) 机器学习 功能磁共振成像 数学 电信 统计 神经科学 探测器 生物
作者
Junzhong Ji,Lu Han,Feipeng Wang,Jinduo Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12 被引量:1
标识
DOI:10.1109/tim.2023.3336748
摘要

Dynamic effective connectivity (DEC) contains abundant temporal and spatial dynamic information, which can characterize the formation and dissolution of distributed directional functional patterns over time. Recently, learning DEC from functional magnetic resonance imaging (fMRI) time-series data has become a new hot spot in the field of neuroinformatics. However, current DEC learning methods are hard to effectively estimate the transition of brain states, and accurately learn the network structure of DEC. In this paper, we propose a novel dynamic effective connectivity learning method based on non-parametric state estimation and generative adversarial network, named nPSE-GAN. The nPSE-GAN first employs non-parametric state estimation (nPSE) to automatically infer the number of brain states and transition time. In detail, the nPSE uses dual extended Kalman filtering (dEKF) to obtain state features, and employs hierarchical clustering to estimate the transition of brain states. Then, the proposed method uses generative adversarial network (GAN) to learn the network structure of DEC. Specifically, GAN takes the transition information and original fMRI time-series data as input, which trains the generator and discriminator simultaneously. The experimental results on simulated data sets show that nPSE-GAN can effectively estimate the transition of brain states and is superior to other state-of-art methods in learning the network structure of DEC. The experimental results on real data sets show that nPSE-GAN can better reveal abnormal patterns of brain activity and has a good application potential in brain network analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瓜瓜发布了新的文献求助10
2秒前
2秒前
茶茶完成签到,获得积分10
3秒前
5秒前
5秒前
楚寅完成签到 ,获得积分10
7秒前
浮游应助ppcat采纳,获得10
7秒前
科研通AI6应助Criminology34采纳,获得10
8秒前
byron完成签到,获得积分10
8秒前
科研通AI6应助lim采纳,获得50
9秒前
等待凝海发布了新的文献求助10
9秒前
9秒前
阿湫完成签到,获得积分10
9秒前
zzy发布了新的文献求助20
10秒前
苹果冬莲完成签到,获得积分10
10秒前
Yao发布了新的文献求助10
10秒前
找不完完成签到,获得积分10
11秒前
Ava应助狮朱采纳,获得10
11秒前
A.M完成签到 ,获得积分10
11秒前
苏安泠完成签到 ,获得积分10
12秒前
joysel完成签到 ,获得积分10
12秒前
jinhongyangkim完成签到,获得积分20
13秒前
小鱼儿发布了新的文献求助10
13秒前
科目三应助子同829采纳,获得10
14秒前
FashionBoy应助infinity采纳,获得10
15秒前
Yt完成签到 ,获得积分10
15秒前
16秒前
16秒前
16秒前
16秒前
16秒前
17秒前
SJK完成签到,获得积分10
18秒前
隐形曼青应助daiweiwei采纳,获得10
18秒前
bsect完成签到,获得积分10
19秒前
香菜丸子发布了新的文献求助10
20秒前
Orange应助carter6713采纳,获得10
20秒前
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4906930
求助须知:如何正确求助?哪些是违规求助? 4184232
关于积分的说明 12993216
捐赠科研通 3950519
什么是DOI,文献DOI怎么找? 2166565
邀请新用户注册赠送积分活动 1185122
关于科研通互助平台的介绍 1091450