Dynamic Effective Connectivity Learning Based on Nonparametric State Estimation and GAN

计算机科学 动态功能连接 鉴别器 人工智能 参数统计 模式识别(心理学) 机器学习 功能磁共振成像 数学 电信 生物 探测器 统计 神经科学
作者
Junzhong Ji,Lu Han,Feipeng Wang,Jinduo Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12 被引量:1
标识
DOI:10.1109/tim.2023.3336748
摘要

Dynamic effective connectivity (DEC) contains abundant temporal and spatial dynamic information, which can characterize the formation and dissolution of distributed directional functional patterns over time. Recently, learning DEC from functional magnetic resonance imaging (fMRI) time-series data has become a new hot spot in the field of neuroinformatics. However, current DEC learning methods are hard to effectively estimate the transition of brain states, and accurately learn the network structure of DEC. In this paper, we propose a novel dynamic effective connectivity learning method based on non-parametric state estimation and generative adversarial network, named nPSE-GAN. The nPSE-GAN first employs non-parametric state estimation (nPSE) to automatically infer the number of brain states and transition time. In detail, the nPSE uses dual extended Kalman filtering (dEKF) to obtain state features, and employs hierarchical clustering to estimate the transition of brain states. Then, the proposed method uses generative adversarial network (GAN) to learn the network structure of DEC. Specifically, GAN takes the transition information and original fMRI time-series data as input, which trains the generator and discriminator simultaneously. The experimental results on simulated data sets show that nPSE-GAN can effectively estimate the transition of brain states and is superior to other state-of-art methods in learning the network structure of DEC. The experimental results on real data sets show that nPSE-GAN can better reveal abnormal patterns of brain activity and has a good application potential in brain network analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小小冰发布了新的文献求助10
3秒前
3秒前
3秒前
嘉心糖应助yyyy采纳,获得20
4秒前
猫见愁发布了新的文献求助10
4秒前
学术彦祖完成签到,获得积分10
4秒前
6秒前
swan发布了新的文献求助10
6秒前
ll应助瑾玉采纳,获得10
6秒前
坦率雪萍发布了新的文献求助10
6秒前
za==发布了新的文献求助10
6秒前
英姑应助tracer采纳,获得10
8秒前
9秒前
字符串完成签到,获得积分10
9秒前
D.Z发布了新的文献求助10
9秒前
裴仰纳完成签到,获得积分10
10秒前
10秒前
阿杜阿杜发布了新的文献求助10
10秒前
Licht-ma发布了新的文献求助10
11秒前
钱多多发布了新的文献求助10
14秒前
PlanB应助125采纳,获得20
15秒前
17秒前
19秒前
19秒前
bigash完成签到,获得积分10
20秒前
20秒前
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
36456657应助科研通管家采纳,获得50
21秒前
丘比特应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
SCIAI应助科研通管家采纳,获得20
22秒前
天天快乐应助科研通管家采纳,获得10
22秒前
赘婿应助临床菜鸟采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305763
求助须知:如何正确求助?哪些是违规求助? 2939395
关于积分的说明 8493534
捐赠科研通 2613845
什么是DOI,文献DOI怎么找? 1427668
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647945