Dynamic Effective Connectivity Learning Based on Nonparametric State Estimation and GAN

计算机科学 动态功能连接 鉴别器 人工智能 参数统计 模式识别(心理学) 机器学习 功能磁共振成像 数学 电信 统计 神经科学 探测器 生物
作者
Junzhong Ji,Lu Han,Feipeng Wang,Jinduo Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12 被引量:1
标识
DOI:10.1109/tim.2023.3336748
摘要

Dynamic effective connectivity (DEC) contains abundant temporal and spatial dynamic information, which can characterize the formation and dissolution of distributed directional functional patterns over time. Recently, learning DEC from functional magnetic resonance imaging (fMRI) time-series data has become a new hot spot in the field of neuroinformatics. However, current DEC learning methods are hard to effectively estimate the transition of brain states, and accurately learn the network structure of DEC. In this paper, we propose a novel dynamic effective connectivity learning method based on non-parametric state estimation and generative adversarial network, named nPSE-GAN. The nPSE-GAN first employs non-parametric state estimation (nPSE) to automatically infer the number of brain states and transition time. In detail, the nPSE uses dual extended Kalman filtering (dEKF) to obtain state features, and employs hierarchical clustering to estimate the transition of brain states. Then, the proposed method uses generative adversarial network (GAN) to learn the network structure of DEC. Specifically, GAN takes the transition information and original fMRI time-series data as input, which trains the generator and discriminator simultaneously. The experimental results on simulated data sets show that nPSE-GAN can effectively estimate the transition of brain states and is superior to other state-of-art methods in learning the network structure of DEC. The experimental results on real data sets show that nPSE-GAN can better reveal abnormal patterns of brain activity and has a good application potential in brain network analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨如之完成签到,获得积分10
1秒前
但大图完成签到 ,获得积分10
1秒前
我是老大应助清新的问枫采纳,获得10
2秒前
2秒前
一切顺利完成签到,获得积分10
3秒前
Mr_I完成签到,获得积分10
3秒前
土土完成签到,获得积分10
5秒前
5秒前
5秒前
Schroenius完成签到 ,获得积分10
5秒前
CipherSage应助recovery采纳,获得10
6秒前
一切顺利发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
10秒前
夏侯无色发布了新的文献求助10
10秒前
Nicho发布了新的文献求助10
10秒前
蜗牛先生发布了新的文献求助10
12秒前
常归尘发布了新的文献求助10
12秒前
别来无恙发布了新的文献求助10
13秒前
13秒前
zj发布了新的文献求助10
14秒前
14秒前
人人发布了新的文献求助10
14秒前
14秒前
殷青完成签到,获得积分10
15秒前
科研通AI2S应助梓辰采纳,获得10
17秒前
QAQ发布了新的文献求助10
19秒前
英俊的铭应助复杂含灵采纳,获得10
21秒前
21秒前
21秒前
传奇3应助东京芝士123采纳,获得10
22秒前
ayuan完成签到,获得积分10
23秒前
24秒前
李麟发布了新的文献求助10
24秒前
24秒前
领导范儿应助一切顺利采纳,获得10
25秒前
蜗牛先生完成签到,获得积分10
25秒前
xxx发布了新的文献求助10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962701
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142251
捐赠科研通 3241458
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517