Dynamic Effective Connectivity Learning Based on Nonparametric State Estimation and GAN

计算机科学 动态功能连接 鉴别器 人工智能 参数统计 模式识别(心理学) 机器学习 功能磁共振成像 数学 电信 生物 探测器 统计 神经科学
作者
Junzhong Ji,Lu Han,Feipeng Wang,Jinduo Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-12 被引量:1
标识
DOI:10.1109/tim.2023.3336748
摘要

Dynamic effective connectivity (DEC) contains abundant temporal and spatial dynamic information, which can characterize the formation and dissolution of distributed directional functional patterns over time. Recently, learning DEC from functional magnetic resonance imaging (fMRI) time-series data has become a new hot spot in the field of neuroinformatics. However, current DEC learning methods are hard to effectively estimate the transition of brain states, and accurately learn the network structure of DEC. In this paper, we propose a novel dynamic effective connectivity learning method based on non-parametric state estimation and generative adversarial network, named nPSE-GAN. The nPSE-GAN first employs non-parametric state estimation (nPSE) to automatically infer the number of brain states and transition time. In detail, the nPSE uses dual extended Kalman filtering (dEKF) to obtain state features, and employs hierarchical clustering to estimate the transition of brain states. Then, the proposed method uses generative adversarial network (GAN) to learn the network structure of DEC. Specifically, GAN takes the transition information and original fMRI time-series data as input, which trains the generator and discriminator simultaneously. The experimental results on simulated data sets show that nPSE-GAN can effectively estimate the transition of brain states and is superior to other state-of-art methods in learning the network structure of DEC. The experimental results on real data sets show that nPSE-GAN can better reveal abnormal patterns of brain activity and has a good application potential in brain network analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
唐的一笔发布了新的文献求助10
2秒前
研友_VZG7GZ应助佳慧采纳,获得10
2秒前
JUGG发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
酷爱小飞发布了新的文献求助10
4秒前
少年游完成签到,获得积分20
6秒前
深情安青应助123采纳,获得10
6秒前
7秒前
苗条的代曼完成签到,获得积分10
7秒前
韶华关注了科研通微信公众号
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
山高水长完成签到,获得积分20
11秒前
11秒前
闪电发布了新的文献求助10
11秒前
12秒前
霜幕发布了新的文献求助10
12秒前
积极如雪完成签到,获得积分10
13秒前
14秒前
14秒前
优美紫槐发布了新的文献求助10
14秒前
优雅泡芙完成签到,获得积分10
14秒前
15秒前
学术菜鸟发布了新的文献求助30
16秒前
17秒前
17秒前
17秒前
贺贺发布了新的文献求助10
17秒前
18秒前
19秒前
麻烦~发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711933
求助须知:如何正确求助?哪些是违规求助? 5206722
关于积分的说明 15265734
捐赠科研通 4864032
什么是DOI,文献DOI怎么找? 2611152
邀请新用户注册赠送积分活动 1561416
关于科研通互助平台的介绍 1518736