Interpretable deep learning for deconvolutional analysis of neural signals

人工智能 计算机科学 人工神经网络 显著性(神经科学) 深度学习 机器学习 模式识别(心理学)
作者
Bahareh Tolooshams,Sara Matias,Hao Wu,Simona Temereanca,Naoshige Uchida,Venkatesh N. Murthy,Paul Masset,Demba Ba
标识
DOI:10.1101/2024.01.05.574379
摘要

The widespread adoption of deep learning to build models that capture the dynamics of neural populations is typically based on "black-box" approaches that lack an interpretable link between neural activity and network parameters. Here, we propose to apply algorithm unrolling, a method for interpretable deep learning, to design the architecture of sparse deconvolutional neural networks and obtain a direct interpretation of network weights in relation to stimulus-driven single-neuron activity through a generative model. We characterize our method, referred to as deconvolutional unrolled neural learning (DUNL), and show its versatility by applying it to deconvolve single-trial local signals across multiple brain areas and recording modalities. To exemplify use cases of our decomposition method, we uncover multiplexed salience and reward prediction error signals from midbrain dopamine neurons in an unbiased manner, perform simultaneous event detection and characterization in somatosensory thalamus recordings, and characterize the heterogeneity of neural responses in the piriform cortex and in the striatum during unstructured, naturalistic experiments. Our work leverages the advances in interpretable deep learning to gain a mechanistic understanding of neural activity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysl完成签到,获得积分10
刚刚
耍酷的白梦完成签到,获得积分10
1秒前
3秒前
3秒前
3秒前
陆lu发布了新的文献求助10
4秒前
天宇发布了新的文献求助10
5秒前
6秒前
天天开心完成签到,获得积分10
6秒前
eazin完成签到 ,获得积分10
8秒前
9秒前
9秒前
12秒前
学术大亨发布了新的文献求助10
12秒前
顺其自然完成签到,获得积分20
12秒前
13秒前
13秒前
鹏哥爱科研完成签到,获得积分10
14秒前
CipherSage应助shuangcheng采纳,获得10
16秒前
17秒前
17秒前
彭于晏应助ray采纳,获得10
18秒前
大大小小发布了新的文献求助10
18秒前
LAN0528完成签到,获得积分10
18秒前
CipherSage应助桃子汽水采纳,获得10
19秒前
19秒前
zzzzzz完成签到,获得积分10
20秒前
香蕉觅云应助小小怪将军采纳,获得10
21秒前
大方从彤完成签到,获得积分10
22秒前
ll完成签到,获得积分10
23秒前
wiwin完成签到,获得积分20
23秒前
LLZ完成签到,获得积分20
23秒前
她是姑娘发布了新的文献求助10
23秒前
24秒前
wanci应助顺其自然采纳,获得10
25秒前
科研通AI5应助yuisl采纳,获得10
26秒前
27秒前
27秒前
28秒前
今后应助zhangpp采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559794
求助须知:如何正确求助?哪些是违规求助? 3134246
关于积分的说明 9406240
捐赠科研通 2834289
什么是DOI,文献DOI怎么找? 1558019
邀请新用户注册赠送积分活动 727812
科研通“疑难数据库(出版商)”最低求助积分说明 716522