Workshop AGV path planning based on improved A* algorithm

路径(计算) 算法 快速通道 启发式 节点(物理) 运动规划 计算机科学 过程(计算) 数学优化 对角线的 路径长度 数学 工程类 人工智能 机器人 操作系统 计算机网络 几何学 结构工程 程序设计语言
作者
Na Liu,Chiyue Ma,Zihang Hu,Pengfei Guo,Yun Ge,Min Tian
出处
期刊:Mathematical Biosciences and Engineering [American Institute of Mathematical Sciences]
卷期号:21 (2): 2137-2162 被引量:2
标识
DOI:10.3934/mbe.2024094
摘要

<abstract> <p>This article proposes an improved A* algorithm aimed at improving the logistics path quality of automated guided vehicles (AGVs) in digital production workshops, solving the problems of excessive path turns and long transportation time. The traditional A* algorithm is improved internally and externally. In the internal improvement process, we propose an improved node search method within the A* algorithm to avoid generating invalid paths; offer a heuristic function which uses diagonal distance instead of traditional heuristic functions to reduce the number of turns in the path; and add turning weights in the A* algorithm formula, further reducing the number of turns in the path and reducing the number of node searches. In the process of external improvement, the output path of the internally improved A* algorithm is further optimized externally by the improved forward search optimization algorithm and the Bessel curve method, which reduces path length and turns and creates a path with fewer turns and a shorter distance. The experimental results demonstrate that the internally modified A* algorithm suggested in this research performs better when compared to six conventional path planning methods. Based on the internally improved A* algorithm path, the full improved A* algorithm reduces the turning angle by approximately 69% and shortens the path by approximately 10%; based on the simulation results, the improved A* algorithm in this paper can reduce the running time of AGV and improve the logistics efficiency in the workshop. Specifically, the walking time of AGV on the improved A* algorithm path is reduced by 12s compared to the traditional A* algorithm.</p> </abstract>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实的老虎完成签到,获得积分10
1秒前
坚强丹雪完成签到,获得积分10
3秒前
5秒前
7秒前
WZ0904发布了新的文献求助10
9秒前
狂野静曼完成签到 ,获得积分10
10秒前
武映易完成签到 ,获得积分10
12秒前
zzz发布了新的文献求助10
13秒前
14秒前
大蒜味酸奶钊完成签到 ,获得积分10
14秒前
鱼宇纸完成签到 ,获得积分10
14秒前
LEE完成签到,获得积分20
14秒前
14秒前
Ava应助无限的绿真采纳,获得10
16秒前
小马甲应助xiongdi521采纳,获得10
16秒前
科研通AI5应助陶醉觅夏采纳,获得200
19秒前
憨鬼憨切发布了新的文献求助10
19秒前
19秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
21秒前
22秒前
23秒前
hh应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得10
23秒前
Eva完成签到,获得积分10
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
搜集达人应助科研通管家采纳,获得10
24秒前
思源应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
清爽老九应助科研通管家采纳,获得20
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
greenPASS666发布了新的文献求助10
24秒前
涂欣桐应助科研通管家采纳,获得10
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
secbox完成签到,获得积分10
25秒前
刘哈哈发布了新的文献求助30
25秒前
xyzdmmm完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849