Workshop AGV path planning based on improved A* algorithm

路径(计算) 算法 快速通道 启发式 节点(物理) 运动规划 计算机科学 过程(计算) 数学优化 对角线的 路径长度 数学 工程类 人工智能 几何学 计算机网络 程序设计语言 操作系统 机器人 结构工程
作者
Na Liu,Chiyue Ma,Zihang Hu,Pengfei Guo,Yun Ge,Min Tian
出处
期刊:Mathematical Biosciences and Engineering [American Institute of Mathematical Sciences]
卷期号:21 (2): 2137-2162 被引量:3
标识
DOI:10.3934/mbe.2024094
摘要

<abstract> <p>This article proposes an improved A* algorithm aimed at improving the logistics path quality of automated guided vehicles (AGVs) in digital production workshops, solving the problems of excessive path turns and long transportation time. The traditional A* algorithm is improved internally and externally. In the internal improvement process, we propose an improved node search method within the A* algorithm to avoid generating invalid paths; offer a heuristic function which uses diagonal distance instead of traditional heuristic functions to reduce the number of turns in the path; and add turning weights in the A* algorithm formula, further reducing the number of turns in the path and reducing the number of node searches. In the process of external improvement, the output path of the internally improved A* algorithm is further optimized externally by the improved forward search optimization algorithm and the Bessel curve method, which reduces path length and turns and creates a path with fewer turns and a shorter distance. The experimental results demonstrate that the internally modified A* algorithm suggested in this research performs better when compared to six conventional path planning methods. Based on the internally improved A* algorithm path, the full improved A* algorithm reduces the turning angle by approximately 69% and shortens the path by approximately 10%; based on the simulation results, the improved A* algorithm in this paper can reduce the running time of AGV and improve the logistics efficiency in the workshop. Specifically, the walking time of AGV on the improved A* algorithm path is reduced by 12s compared to the traditional A* algorithm.</p> </abstract>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙啊程完成签到,获得积分10
刚刚
小哲发布了新的文献求助30
1秒前
1秒前
2秒前
嘿嘿应助走地坤采纳,获得10
2秒前
2秒前
aaabaev应助xiaowei采纳,获得10
3秒前
4秒前
贪玩堡玉完成签到,获得积分10
5秒前
Jasmine发布了新的文献求助10
5秒前
7秒前
细心的飞柏完成签到,获得积分10
7秒前
8秒前
8秒前
芃芃完成签到,获得积分10
8秒前
NexusExplorer应助长情智宸采纳,获得10
9秒前
大海发布了新的文献求助10
9秒前
小张发布了新的文献求助10
9秒前
小张完成签到,获得积分10
10秒前
万能图书馆应助甜甜甜采纳,获得10
10秒前
11秒前
11秒前
yh发布了新的文献求助30
12秒前
炙热灵枫发布了新的文献求助10
13秒前
大力三问发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
14秒前
面包完成签到,获得积分10
15秒前
星辰大海应助神勇书芹采纳,获得10
15秒前
crystaler发布了新的文献求助10
15秒前
hjabao完成签到,获得积分10
15秒前
小鸻完成签到,获得积分10
16秒前
Bob发布了新的文献求助10
16秒前
aldehyde应助燕真采纳,获得10
16秒前
走地坤发布了新的文献求助10
18秒前
18秒前
18秒前
WWW发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360565
求助须知:如何正确求助?哪些是违规求助? 4491182
关于积分的说明 13981625
捐赠科研通 4393796
什么是DOI,文献DOI怎么找? 2413638
邀请新用户注册赠送积分活动 1406466
关于科研通互助平台的介绍 1380932