The role of artificial intelligence in crop improvement

人工智能 机器学习 计算机科学 深度学习 人工神经网络
作者
Karlene L. Negus,Xianran Li,Stephen M. Welch,Jianming Yu
出处
期刊:Advances in Agronomy 卷期号:: 1-66 被引量:1
标识
DOI:10.1016/bs.agron.2023.11.001
摘要

The growing global demands for agricultural goods will require accelerated crop improvement. High-throughput genomic, phenomic, enviromic and other multi-omic data collection methods have largely satisfied data acquisition bottlenecks that previously existed within crop breeding and management. Fully capitalizing on large, high-dimensional datasets has now evolved as a new challenge. Artificial intelligence (AI) is currently the foremost solution. Types of AI with the capacity to learn (machine learning), such as neural networks, can better facilitate the translation of data into useful predictions by bypassing the limitations of human expert-driven learning. The potential for applying AI to major crop improvement methods has already been demonstrated with preliminary successes shown using deep learning for genomic selection, feature selection for enviromics, ensembles and knowledge-based AI for crop growth modeling, computer vision and convolutional neural networks for phenomics, and unsupervised machine learning for multi-omics. Other types of neural networks including transformer, recurrent, encoding decoding, and generative networks as well as symbolic (non-learning) AI such as robotic process automation, expert systems, and inductive logic programming are also reviewed to contextualize the rapidly changing AI field. Overall, AI has shown strong potential to leverage data for a variety of crop improvement tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈发布了新的文献求助10
2秒前
lujia完成签到 ,获得积分10
7秒前
una完成签到,获得积分10
7秒前
8秒前
熹微发布了新的文献求助10
13秒前
流星完成签到,获得积分10
13秒前
15秒前
16秒前
shapvalue发布了新的文献求助10
17秒前
昏睡的半莲完成签到 ,获得积分20
18秒前
18秒前
石人达完成签到 ,获得积分10
19秒前
HYCT完成签到 ,获得积分10
21秒前
21秒前
22秒前
una发布了新的文献求助10
22秒前
shaco发布了新的文献求助10
23秒前
孙长胜完成签到,获得积分10
23秒前
wyr525完成签到,获得积分10
24秒前
25秒前
山楂看海完成签到,获得积分10
26秒前
tramp应助llzuo采纳,获得20
26秒前
28秒前
29秒前
SciGPT应助wyr525采纳,获得10
30秒前
不配.应助蓝波酱采纳,获得10
30秒前
小甘看世界完成签到,获得积分10
32秒前
轻松刚发布了新的文献求助10
33秒前
啊啊啊完成签到 ,获得积分10
34秒前
子不语完成签到,获得积分10
37秒前
38秒前
39秒前
brave heart完成签到,获得积分10
41秒前
41秒前
lujia关注了科研通微信公众号
43秒前
顾矜应助Leeny采纳,获得10
43秒前
43秒前
浮生发布了新的文献求助10
45秒前
淡dan完成签到,获得积分10
47秒前
50秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136151
求助须知:如何正确求助?哪些是违规求助? 2787065
关于积分的说明 7780419
捐赠科研通 2443217
什么是DOI,文献DOI怎么找? 1298945
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870