材料科学
电介质
陶瓷
钨
储能
电容器
电场
脉冲功率
四方晶系
功率密度
光电子学
铁电性
复合材料
相(物质)
电压
功率(物理)
冶金
电气工程
热力学
工程类
物理
有机化学
化学
量子力学
作者
Yangfei Gao,Wenjing Qiao,Xiaojie Lou,Zizheng Song,Xiaopei Zhu,Liqiang He,Bian Yang,Yanhua Hu,Jinyou Shao,Danyang Wang,Zibin Chen,Shujun Zhang
标识
DOI:10.1002/adma.202310559
摘要
Abstract Dielectric energy‐storage capacitors, known for their ultrafast discharge time and high‐power density, find widespread applications in high‐power pulse devices. However, ceramics featuring a tetragonal tungsten bronze structure (TTBs) have received limited attention due to their lower energy‐storage capacity compared to perovskite counterparts. Herein, a TTBs relaxor ferroelectric ceramic based on the Gd 0.03 Ba 0.47 Sr 0.485‐1.5 x Sm x Nb 2 O 6 composition, exhibiting an ultrahigh recoverable energy density of 9 J cm −3 and an efficiency of 84% under an electric field of 660 kV cm −1 is reported. Notably, the energy storage performance of this ceramic shows remarkable stability against frequency, temperature, and cycling electric field. The introduction of Sm 3+ doping is found to create weakly coupled polar nanoregions in the Gd 0.03 Ba 0.47 Sr 0.485 Nb 2 O 6 ceramic. Structural characterizations reveal that the incommensurability parameter increases with higher Sm 3+ content, indicative of a highly disordered A‐site structure. Simultaneously, the breakdown strength is also enhanced by raising the conduction activation energy, widening the bandgap, and reducing the electric field‐induced strain. This work presents a significant improvement on the energy storage capabilities of TTBs‐based capacitors, expanding the material choice for high‐power pulse device applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI