Deep learning-based 3D single-cell imaging analysis pipeline enables quantification of cell-cell interaction dynamics in the tumor microenvironment

肿瘤微环境 细胞 电池类型 计算机科学 病理 计算生物学 生物 肿瘤细胞 医学 癌症研究 遗传学
作者
Bodong Liu,Yanchun Zhu,Zhenye Yang,Helen H.N. Yan,Suet Yi Leung,Jue Shi
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (4): 517-526
标识
DOI:10.1158/0008-5472.can-23-1100
摘要

The three-dimensional (3D) tumor microenvironment (TME) comprises multiple interacting cell types that critically impact tumor pathology and therapeutic response. Efficient 3D imaging assays and analysis tools could facilitate profiling and quantifying distinctive cell-cell interaction dynamics in the TMEs of a wide spectrum of human cancers. Here, we developed a 3D live-cell imaging assay using confocal microscopy of patient-derived tumor organoids and a software tool, SiQ-3D (single-cell image quantifier for 3D), that optimizes deep learning (DL)-based 3D image segmentation, single-cell phenotype classification, and tracking to automatically acquire multidimensional dynamic data for different interacting cell types in the TME. An organoid model of tumor cells interacting with natural killer cells was used to demonstrate the effectiveness of the 3D imaging assay to reveal immuno-oncology dynamics as well as the accuracy and efficiency of SiQ-3D to extract quantitative data from large 3D image datasets. SiQ-3D is Python-based, publicly available, and customizable to analyze data from both in vitro and in vivo 3D imaging. The DL-based 3D imaging analysis pipeline can be employed to study not only tumor interaction dynamics with diverse cell types in the TME but also various cell-cell interactions involved in other tissue/organ physiology and pathology.A 3D single-cell imaging pipeline that quantifies cancer cell interaction dynamics with other TME cell types using primary patient-derived samples can elucidate how cell-cell interactions impact tumor behavior and treatment responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助ZY采纳,获得10
刚刚
刚刚
刚刚
1秒前
烟花应助sx采纳,获得10
1秒前
1秒前
张志超发布了新的文献求助10
1秒前
sophia1211发布了新的文献求助10
2秒前
香蕉觅云应助4477采纳,获得10
2秒前
开心的盼雁关注了科研通微信公众号
2秒前
仁太完成签到,获得积分10
2秒前
善学以致用应助细心帽子采纳,获得10
2秒前
4秒前
外向秋灵发布了新的文献求助10
5秒前
5秒前
拼搏的鱼发布了新的文献求助10
5秒前
Zz完成签到 ,获得积分10
5秒前
卤蛋发布了新的文献求助10
5秒前
zoe666应助112233采纳,获得10
5秒前
风笛发布了新的文献求助10
6秒前
李健的小迷弟应助penguin采纳,获得10
6秒前
欣欣子发布了新的文献求助10
6秒前
美好的霆完成签到,获得积分10
6秒前
宋浩奇完成签到,获得积分10
6秒前
十三应助wxp采纳,获得10
7秒前
8秒前
勤恳马里奥完成签到,获得积分0
8秒前
dudu发布了新的文献求助10
8秒前
明亮访烟发布了新的文献求助10
9秒前
LLL20240701完成签到,获得积分10
9秒前
纪靖雁完成签到 ,获得积分10
9秒前
10秒前
安可发布了新的文献求助10
10秒前
zz完成签到,获得积分10
10秒前
小马甲应助风中的擎采纳,获得30
10秒前
呆呆完成签到,获得积分10
11秒前
西红柿发布了新的文献求助100
11秒前
11秒前
carolsoongmm发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Aircraft Engine Design, Third Edition 308
Contribution of transmembrane channel-like (TMC) proteins 3, 5 and 7 to pain and itch processing 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5155634
求助须知:如何正确求助?哪些是违规求助? 4351380
关于积分的说明 13548359
捐赠科研通 4194107
什么是DOI,文献DOI怎么找? 2300362
邀请新用户注册赠送积分活动 1300293
关于科研通互助平台的介绍 1245336