Deep learning-based 3D single-cell imaging analysis pipeline enables quantification of cell-cell interaction dynamics in the tumor microenvironment

肿瘤微环境 细胞 电池类型 计算机科学 病理 计算生物学 生物 肿瘤细胞 医学 癌症研究 遗传学
作者
Bodong Liu,Yanchun Zhu,Zhenye Yang,Helen H.N. Yan,Suet Yi Leung,Jue Shi
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (4): 517-526
标识
DOI:10.1158/0008-5472.can-23-1100
摘要

The three-dimensional (3D) tumor microenvironment (TME) comprises multiple interacting cell types that critically impact tumor pathology and therapeutic response. Efficient 3D imaging assays and analysis tools could facilitate profiling and quantifying distinctive cell-cell interaction dynamics in the TMEs of a wide spectrum of human cancers. Here, we developed a 3D live-cell imaging assay using confocal microscopy of patient-derived tumor organoids and a software tool, SiQ-3D (single-cell image quantifier for 3D), that optimizes deep learning (DL)-based 3D image segmentation, single-cell phenotype classification, and tracking to automatically acquire multidimensional dynamic data for different interacting cell types in the TME. An organoid model of tumor cells interacting with natural killer cells was used to demonstrate the effectiveness of the 3D imaging assay to reveal immuno-oncology dynamics as well as the accuracy and efficiency of SiQ-3D to extract quantitative data from large 3D image datasets. SiQ-3D is Python-based, publicly available, and customizable to analyze data from both in vitro and in vivo 3D imaging. The DL-based 3D imaging analysis pipeline can be employed to study not only tumor interaction dynamics with diverse cell types in the TME but also various cell-cell interactions involved in other tissue/organ physiology and pathology.A 3D single-cell imaging pipeline that quantifies cancer cell interaction dynamics with other TME cell types using primary patient-derived samples can elucidate how cell-cell interactions impact tumor behavior and treatment responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
在水一方应助lll采纳,获得10
1秒前
1秒前
xinxin发布了新的文献求助10
2秒前
Lucas应助腼腆的又槐采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助30
4秒前
归尘发布了新的文献求助30
6秒前
6秒前
思源应助研友_8yN60L采纳,获得10
7秒前
nihao完成签到,获得积分20
7秒前
7秒前
www应助狒狒采纳,获得20
7秒前
小无发布了新的文献求助10
7秒前
英俊的铭应助怡然小蚂蚁采纳,获得10
8秒前
9秒前
9秒前
9秒前
晚秋北斗完成签到 ,获得积分10
9秒前
11秒前
所所应助RC_Wang采纳,获得10
12秒前
13秒前
13秒前
minggong发布了新的文献求助10
13秒前
14秒前
14秒前
家伟发布了新的文献求助10
15秒前
15秒前
ww发布了新的文献求助10
16秒前
liviawong完成签到,获得积分10
17秒前
18秒前
桐桐应助xinxin采纳,获得10
18秒前
马尔尼菲蓝状菌完成签到,获得积分10
19秒前
19秒前
林een发布了新的文献求助30
19秒前
20秒前
莫兮佐发布了新的文献求助10
20秒前
Saber完成签到,获得积分10
22秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959110
求助须知:如何正确求助?哪些是违规求助? 3505445
关于积分的说明 11123768
捐赠科研通 3237126
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821