Image-to-Character-to-Word Transformers for Accurate Scene Text Recognition

计算机科学 人工智能 解码方法 性格(数学) 光学字符识别 模式识别(心理学) 词(群论) 语音识别 计算机视觉 自然语言处理 图像(数学) 电信 语言学 哲学 几何学 数学
作者
Chuhui Xue,Jiaxing Huang,Wenqing Zhang,Shijian Lu,Changhu Wang,Song Bai
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-14 被引量:15
标识
DOI:10.1109/tpami.2022.3230962
摘要

Leveraging the advances of natural language processing, most recent scene text recognizers adopt an encoder-decoder architecture where text images are first converted to representative features and then a sequence of characters via 'sequential decoding'. However, scene text images suffer from rich noises of different sources such as complex background and geometric distortions which often confuse the decoder and lead to incorrect alignment of visual features at noisy decoding time steps. This paper presents I2C2W, a novel scene text recognition technique that is tolerant to geometric and photometric degradation by decomposing scene text recognition into two inter-connected tasks. The first task focuses on image-to-character (I2C) mapping which detects a set of character candidates from images based on different alignments of visual features in an non-sequential way. The second task tackles character-to-word (C2W) mapping which recognizes scene text by decoding words from the detected character candidates. The direct learning from character semantics (instead of noisy image features) corrects falsely detected character candidates effectively which improves the final text recognition accuracy greatly. Extensive experiments over nine public datasets show that the proposed I2C2W outperforms the state-of-the-art by large margins for challenging scene text datasets with various curvature and perspective distortions. It also achieves very competitive recognition performance over multiple normal scene text datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅魔镜发布了新的文献求助10
刚刚
研友_VZG7GZ应助乂则断采纳,获得10
刚刚
请叫我风吹麦浪给LmyHusband的求助进行了留言
1秒前
Rational完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
3秒前
fengpu完成签到 ,获得积分10
3秒前
4秒前
研友_Lmb15n完成签到,获得积分10
4秒前
情怀应助Domagin采纳,获得10
5秒前
俭朴映阳发布了新的文献求助10
6秒前
6秒前
知了完成签到,获得积分10
7秒前
舒适靖柔发布了新的文献求助30
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
珞燚完成签到 ,获得积分10
9秒前
lxy发布了新的文献求助10
9秒前
小乐儿~完成签到,获得积分10
9秒前
马甲发布了新的文献求助30
10秒前
昏睡的蟠桃发布了新的文献求助200
11秒前
石头完成签到,获得积分20
11秒前
Aress璇玑完成签到 ,获得积分10
12秒前
汉堡包应助标致的小天鹅采纳,获得10
12秒前
幸福大白发布了新的文献求助10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
XinG应助科研通管家采纳,获得10
12秒前
苏卿应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
苏卿应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662527
求助须知:如何正确求助?哪些是违规求助? 3223281
关于积分的说明 9750921
捐赠科研通 2933162
什么是DOI,文献DOI怎么找? 1605938
邀请新用户注册赠送积分活动 758208
科研通“疑难数据库(出版商)”最低求助积分说明 734752