Deep Reinforcement Learning Based Joint Beam Allocation and Relay Selection in mmWave Vehicular Networks

计算机网络 计算机科学 阻塞(统计) 继电器 基站 电信线路 强化学习 传输(电信) 服务质量 资源配置 实时计算 电信 人工智能 功率(物理) 物理 量子力学
作者
Ying Ju,Haoyu Wang,Yuchao Chen,Tong-Xing Zheng,Qingqi Pei,Jinhong Yuan,Naofal Al‐Dhahir
出处
期刊:IEEE Transactions on Communications [Institute of Electrical and Electronics Engineers]
卷期号:71 (4): 1997-2012 被引量:14
标识
DOI:10.1109/tcomm.2023.3240754
摘要

Millimeter-wave (mmWave) can provide abundant spectrum resource in vehicular communication networks. Nevertheless, due to the high path-loss and blocking effects in mmWave propagation, and high mobility of vehicles, downlink services for vehicles would be seriously degraded. In this paper, we firstly propose a deep reinforcement learning-based joint beam allocation and relay selection (JoBARS) scheme to mitigate blocking effects and optimize the total transmission rate of the vehicular network, where the mmWave base station (mmBS) provides multi-user services. When downlinks are blocked, the mmBS can select appropriate idle vehicles as relay nodes to enhance service quality from a global perspective. We set the rate punishment restriction in JoBARS scheme to guarantee each vehicle can obtain high-quality service. Besides, a relaying incentive mechanism (RIM) is proposed to avoid vehicles being overly selected for relaying and ensure that relay vehicles have a higher chance of being served in the next round. We demonstrate that JoBARS scheme can effectively enhance the total transmission rate while alleviating transmission outages caused by severe propagation attenuation of mmWave signals. Compared with Greedy Selection scheme, the total rate and average connection probability of vehicles under JoBARS scheme are nearly 17% and 14% higher when blocking effects are severe.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luna发布了新的文献求助10
2秒前
Estrella应助赵三岁采纳,获得10
2秒前
小平发布了新的文献求助10
4秒前
6秒前
可爱的香岚完成签到,获得积分10
6秒前
宁小满完成签到,获得积分10
7秒前
7秒前
隐形的山雁完成签到,获得积分10
8秒前
jijijibibibi完成签到,获得积分10
8秒前
爱科研的小吴完成签到 ,获得积分10
9秒前
hanxuepenyun发布了新的文献求助10
10秒前
11秒前
大个应助再睡亿分钟采纳,获得10
12秒前
YNC完成签到,获得积分10
12秒前
HHHHHJ完成签到,获得积分10
12秒前
12秒前
Ava应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得30
13秒前
pwy应助科研通管家采纳,获得20
13秒前
聪慧海豚应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
13秒前
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
JaneChen发布了新的文献求助10
15秒前
17秒前
17秒前
科研通AI2S应助静心404采纳,获得10
17秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140783
求助须知:如何正确求助?哪些是违规求助? 2791678
关于积分的说明 7800053
捐赠科研通 2448055
什么是DOI,文献DOI怎么找? 1302292
科研通“疑难数据库(出版商)”最低求助积分说明 626500
版权声明 601210