Machine learning based identification of structural brain alterations underlying suicide risk in adolescents

支持向量机 接收机工作特性 神经影像学 楔前 人工智能 机器学习 特征选择 心理学 医学 计算机科学 精神科 认知
作者
Sahil Bajaj,Karina S. Blair,Matthew Dobbertin,Kaustubh R. Patil,Patrick M. Tyler,Jay L. Ringle,Johannah Bashford‐Largo,Avantika Mathur,Jaimie Elowsky,Ahria Dominguez,Lianne Schmaal,R. J. R. Blair
出处
期刊:Discover Mental Health 卷期号:3 (1) 被引量:1
标识
DOI:10.1007/s44192-023-00033-6
摘要

Suicide is the third leading cause of death for individuals between 15 and 19 years of age. The high suicide mortality rate and limited prior success in identifying neuroimaging biomarkers indicate that it is crucial to improve the accuracy of clinical neural signatures underlying suicide risk. The current study implements machine-learning (ML) algorithms to examine structural brain alterations in adolescents that can discriminate individuals with suicide risk from typically developing (TD) adolescents at the individual level. Structural MRI data were collected from 79 adolescents who demonstrated clinical levels of suicide risk and 79 demographically matched TD adolescents. Region-specific cortical/subcortical volume (CV/SCV) was evaluated following whole-brain parcellation into 1000 cortical and 12 subcortical regions. CV/SCV parameters were used as inputs for feature selection and three ML algorithms (i.e., support vector machine [SVM], K-nearest neighbors, and ensemble) to classify adolescents at suicide risk from TD adolescents. The highest classification accuracy of 74.79% (with sensitivity = 75.90%, specificity = 74.07%, and area under the receiver operating characteristic curve = 87.18%) was obtained for CV/SCV data using the SVM classifier. Identified bilateral regions that contributed to the classification mainly included reduced CV within the frontal and temporal cortices but increased volume within the cuneus/precuneus for adolescents at suicide risk relative to TD adolescents. The current data demonstrate an unbiased region-specific ML framework to effectively assess the structural biomarkers of suicide risk. Future studies with larger sample sizes and the inclusion of clinical controls and independent validation data sets are needed to confirm our findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科研通AI2S应助顺利琦采纳,获得10
4秒前
Lucas应助小何采纳,获得10
5秒前
研友_8Qxp7Z发布了新的文献求助10
6秒前
小何完成签到,获得积分10
6秒前
桃子完成签到,获得积分10
7秒前
10秒前
小何发布了新的文献求助10
12秒前
中中发布了新的文献求助10
12秒前
秋半梦发布了新的文献求助10
15秒前
善学以致用应助zhangyx采纳,获得10
15秒前
充电宝应助LH采纳,获得30
16秒前
17秒前
在水一方应助TCMning采纳,获得10
17秒前
18秒前
鲍文启完成签到 ,获得积分10
20秒前
Jeannie发布了新的文献求助30
20秒前
20秒前
21秒前
21秒前
21秒前
22秒前
hitagi发布了新的文献求助10
22秒前
22秒前
啊哦嘿发布了新的文献求助10
22秒前
22秒前
anyi完成签到,获得积分10
22秒前
Taylor完成签到,获得积分20
23秒前
23秒前
壮观戾发布了新的文献求助10
23秒前
夏蓉发布了新的文献求助10
25秒前
25秒前
郝好完成签到 ,获得积分10
25秒前
皮咻发布了新的文献求助10
26秒前
zhuzhuxia发布了新的文献求助30
26秒前
隐形谷秋发布了新的文献求助10
27秒前
狗儿吖完成签到 ,获得积分10
27秒前
小王院士发布了新的文献求助10
27秒前
Dr_Stars完成签到,获得积分10
27秒前
rosalieshi应助coolkid采纳,获得50
28秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793077
关于积分的说明 7805362
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303232
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291