Machine learning based identification of structural brain alterations underlying suicide risk in adolescents

支持向量机 接收机工作特性 神经影像学 楔前 人工智能 机器学习 特征选择 心理学 医学 计算机科学 精神科 认知
作者
Sahil Bajaj,Karina S. Blair,Matthew Dobbertin,Kaustubh R. Patil,Patrick M. Tyler,Jay L. Ringle,Johannah Bashford‐Largo,Avantika Mathur,Jaimie Elowsky,Ahria Dominguez,Lianne Schmaal,R. J. R. Blair
出处
期刊:Discover Mental Health 卷期号:3 (1) 被引量:1
标识
DOI:10.1007/s44192-023-00033-6
摘要

Suicide is the third leading cause of death for individuals between 15 and 19 years of age. The high suicide mortality rate and limited prior success in identifying neuroimaging biomarkers indicate that it is crucial to improve the accuracy of clinical neural signatures underlying suicide risk. The current study implements machine-learning (ML) algorithms to examine structural brain alterations in adolescents that can discriminate individuals with suicide risk from typically developing (TD) adolescents at the individual level. Structural MRI data were collected from 79 adolescents who demonstrated clinical levels of suicide risk and 79 demographically matched TD adolescents. Region-specific cortical/subcortical volume (CV/SCV) was evaluated following whole-brain parcellation into 1000 cortical and 12 subcortical regions. CV/SCV parameters were used as inputs for feature selection and three ML algorithms (i.e., support vector machine [SVM], K-nearest neighbors, and ensemble) to classify adolescents at suicide risk from TD adolescents. The highest classification accuracy of 74.79% (with sensitivity = 75.90%, specificity = 74.07%, and area under the receiver operating characteristic curve = 87.18%) was obtained for CV/SCV data using the SVM classifier. Identified bilateral regions that contributed to the classification mainly included reduced CV within the frontal and temporal cortices but increased volume within the cuneus/precuneus for adolescents at suicide risk relative to TD adolescents. The current data demonstrate an unbiased region-specific ML framework to effectively assess the structural biomarkers of suicide risk. Future studies with larger sample sizes and the inclusion of clinical controls and independent validation data sets are needed to confirm our findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒甜瓜发布了新的文献求助10
刚刚
jessie完成签到,获得积分10
刚刚
化学胖子完成签到,获得积分10
刚刚
1秒前
CTL关闭了CTL文献求助
1秒前
詹严青完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
顾矜应助Long采纳,获得10
1秒前
2秒前
木木完成签到,获得积分20
2秒前
爆米花应助1ssd采纳,获得10
3秒前
Lucas应助reck采纳,获得10
3秒前
西瓜完成签到,获得积分10
3秒前
KDC发布了新的文献求助10
3秒前
潇湘完成签到 ,获得积分10
3秒前
打打应助sss采纳,获得20
3秒前
nicemice完成签到,获得积分10
3秒前
4秒前
GOODYUE发布了新的文献求助10
4秒前
热情的阿猫桑完成签到,获得积分10
5秒前
Gaojin锦完成签到,获得积分10
5秒前
5秒前
小二郎应助愉快的鞯采纳,获得10
6秒前
协和_子鱼发布了新的文献求助10
6秒前
6秒前
6秒前
Danboard发布了新的文献求助10
6秒前
HC完成签到 ,获得积分10
7秒前
小智完成签到,获得积分20
7秒前
7秒前
HopeStar发布了新的文献求助10
7秒前
7秒前
7秒前
所所应助Southluuu采纳,获得10
8秒前
摆烂fish完成签到,获得积分10
8秒前
神勇的雅香应助务实大船采纳,获得10
8秒前
www完成签到,获得积分10
8秒前
科研通AI5应助谢朝邦采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759