Impact of catalyst loading of atomically dispersed transition metal catalysts on H2O2 electrosynthesis selectivity

电合成 催化作用 过渡金属 选择性 介孔材料 材料科学 催化剂载体 化学工程 过氧化氢 无机化学 电化学 化学 电极 有机化学 物理化学 工程类
作者
June Sung Lim,Jinjong Kim,Kug‐Seung Lee,Young Jin,Sang Hoon Joo
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:444: 142031-142031 被引量:11
标识
DOI:10.1016/j.electacta.2023.142031
摘要

Electrosynthesis of hydrogen peroxide (H2O2) via a two-electron oxygen reduction reaction (2e− ORR) has emerged as a promising alternative to the current anthraquinone process. Atomically dispersed transition metal catalysts (M–N/C catalysts; M=transition metal) have received particular attention as H2O2 electrosynthesis catalysts. Among the factors affecting catalytic properties, the catalyst loading on the electrode has significant impacts on the ORR activity and selectivity of M–N/C catalysts in particular and electrocatalysts in general. However, the loading effect has been largely neglected and underexplored in literature. In this study, we investigated the impacts of the catalyst loading and the metal center in M–N/C catalysts on the 2e− ORR activity and selectivity. We prepared a series of mesoporous carbons comprising M (Fe, Co, Ni)-based atomically dispersed species, meso‑M–N/C catalysts. At a fixed low catalyst loading, the meso‑Co–N/C and meso‑Ni–N/C catalysts exhibited the best 2e−ORR performance under acidic and alkaline electrolytes, respectively. At high catalyst loadings, the H2O2 production activity of the meso‑Co–N/C catalyst dramatically declined to ∼20% compared to that at the low loading. In the thick catalyst layer, the generated H2O2 is accumulated due to poor mass transport, leading to reduction and/or decomposition. In contrast, the H2O2 synthesis activity meso‑Ni–N/C catalyst was nearly insensitive to the catalyst loading, which can be ascribed to the high porosity and well-developed mesopores of the meso‑Ni–N/C catalyst, promoting mass transport.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈信宏完成签到,获得积分10
刚刚
刚刚
逍遥子完成签到,获得积分10
刚刚
1秒前
ff发布了新的文献求助10
2秒前
浮游应助djbj2022采纳,获得10
2秒前
科研通AI6应助双夏采纳,获得30
4秒前
冬日空虚完成签到,获得积分10
4秒前
5秒前
7秒前
8秒前
大个应助小黄采纳,获得10
8秒前
9秒前
9秒前
jack发布了新的文献求助10
10秒前
爱笑的天空完成签到,获得积分10
10秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
simdows完成签到,获得积分10
14秒前
科研通AI6应助季文婷采纳,获得10
14秒前
脑洞疼应助jack采纳,获得10
18秒前
123应助儒雅致远采纳,获得10
18秒前
慕青应助儒雅致远采纳,获得10
18秒前
善学以致用应助万事都灵采纳,获得10
19秒前
Wonder罗完成签到,获得积分20
20秒前
小蘑菇应助坦率幻灵采纳,获得10
24秒前
24秒前
25秒前
26秒前
28秒前
msf0073应助JJJ采纳,获得10
30秒前
躺躺躺发布了新的文献求助10
31秒前
33秒前
34秒前
35秒前
36秒前
量子星尘发布了新的文献求助10
37秒前
ningwu完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741