Nanocutting mechanisms of Cu50Zr50 amorphous alloy: A molecular dynamics simulation

材料科学 非晶态金属 无定形固体 机械加工 前角 表面粗糙度 复合材料 变形(气象学) 剪切(地质) 冶金 合金 结晶学 化学
作者
Xianjun Kong,Wenwu Wang,Minghai Wang,Ning Hou
出处
期刊:Journal of Non-crystalline Solids [Elsevier]
卷期号:605: 122161-122161 被引量:6
标识
DOI:10.1016/j.jnoncrysol.2023.122161
摘要

Amorphous structures can achieve high mechanical strength and toughness, excellent magnetic properties, anti-corrosion, and anti-friction properties, resulting in their wide applicability, thereby prompting research interest in the role of nanofabrication for amorphous alloys. In this study, the deformation behavior of amorphous alloy Cu50Zr50 during nano cutting was investigated via molecular dynamics simulations. By analyzing the variations of the displacement vector, shear strain, cutting force, and cutting temperature, the removal mechanism of the amorphous alloy material was studied in detail. The amorphous alloy was removed via extrusion during nano cutting. The shear transition zone was formed via the local atomic superposition to form a shear band, and the atoms recovered elastically to form a machined surface. The effects of the cutting depth, cutting speed, and tool angle on the deformation behavior of the material were investigated. The results indicate that the cutting force, cutting temperature, and friction coefficient are increased with an increasing in cutting depth. An appropriate increase in the clearance angle and decrease in the rake angle can reduce the cutting force and friction coefficient. Based on the evolution law of the surface, the plastic transformation of the cutting amorphous alloys was predicted. At the cutting speed of 100–200 m/s, the friction coefficient remained unchanged, which accelerated the formation of a plastic transition zone. For different machining angles, the largest cutting force and surface roughness were obtained at 45°, whereas the least values were obtained at 60°. Therefore, the different machining angle can reduce the cutting forces and improve the quality of the machined surface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MADKAI发布了新的文献求助10
1秒前
1秒前
李健的小迷弟应助111采纳,获得10
2秒前
Accept应助wintercyan采纳,获得20
2秒前
哲999完成签到,获得积分10
2秒前
Mian完成签到,获得积分10
2秒前
3秒前
3秒前
于嗣濠完成签到 ,获得积分10
3秒前
36456657应助CC采纳,获得10
3秒前
优雅山柏发布了新的文献求助10
4秒前
Jacky完成签到,获得积分10
4秒前
脑洞疼应助无情的白桃采纳,获得10
4秒前
mm发布了新的文献求助10
4秒前
5秒前
5秒前
zoko发布了新的文献求助10
5秒前
5秒前
曾经的臻发布了新的文献求助10
5秒前
华仔应助S1mple_gentleman采纳,获得10
5秒前
科研通AI5应助CC采纳,获得10
5秒前
5秒前
6秒前
6秒前
张静静完成签到,获得积分10
7秒前
7秒前
震666发布了新的文献求助30
7秒前
MADKAI发布了新的文献求助10
7秒前
7秒前
117发布了新的文献求助10
7秒前
8秒前
8秒前
酶没美镁完成签到,获得积分10
8秒前
小二郎应助Rui采纳,获得10
8秒前
Libra完成签到,获得积分10
9秒前
雪儿发布了新的文献求助30
9秒前
无悔呀发布了新的文献求助10
9秒前
小巧的可仁完成签到 ,获得积分10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740