亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph-Augmented Co-Attention Model for Socio-Sequential Recommendation

计算机科学 工作流程 嵌入 图形 人工智能 机器学习 理论计算机科学 数据库
作者
Bin Wu,Xiangnan He,Le Wu,Xue Zhang,Yangdong Ye
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (7): 4039-4051 被引量:27
标识
DOI:10.1109/tsmc.2023.3242308
摘要

A sequential recommendation has become a hot research topic, which seeks to predict the next interesting item for each user based on his action sequence. While previous methods have made many efforts to capture the dynamics of sequential patterns, we contend that they still suffer from two inherent limitations: 1) they fail to model item transition patterns in an efficient and time-sensitive manner and 2) they are unaware of the importance of dynamically capturing social influence, resulting in suboptimal performance. We introduce a new concept dubbed socio-sequential recommendation, where the challenge mainly lies in dynamically modeling social influences and capturing item-to-item transition patterns in a time-sensitive manner. In light of this, we contribute a novel solution named GCARec (short for graph-augmented co-attention model), which takes into account the joint effect of dynamic sequential patterns and dynamic social influences. GCARec decomposes socio-sequential recommendation workflow into two steps. First, we adopt a light graph embedding module to model long-term user preference. Then, we propose a time-sensitive attention mechanism and a social-aware attention mechanism to capture dynamic patterns at sequential-level and social-level, respectively. Extensive experiments have been conducted on eight real-world datasets from different scenarios, demonstrating the superiority of GCARec against several state-of-the-art methods. The codes and datasets have been released at: https://github.com/wubinzzu/GCARec .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烤鱼不裹面包完成签到 ,获得积分10
3秒前
科研通AI2S应助吴茂林采纳,获得10
14秒前
辛勤山柳完成签到 ,获得积分20
19秒前
叙温雨发布了新的文献求助10
34秒前
garbage完成签到,获得积分10
40秒前
飘逸的飞丹完成签到 ,获得积分10
46秒前
47秒前
terry发布了新的文献求助10
53秒前
浮游应助科研通管家采纳,获得10
1分钟前
GingerF应助科研通管家采纳,获得200
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
GingerF应助科研通管家采纳,获得200
1分钟前
怡然枫叶完成签到,获得积分10
1分钟前
ysc121完成签到 ,获得积分10
1分钟前
1分钟前
慕青应助terry采纳,获得20
1分钟前
芝士发布了新的文献求助10
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Chen完成签到 ,获得积分10
1分钟前
Criminology34应助olekravchenko采纳,获得10
1分钟前
1分钟前
张晓祁完成签到,获得积分10
1分钟前
yueying完成签到,获得积分10
2分钟前
Criminology34应助olekravchenko采纳,获得10
2分钟前
打打应助叙温雨采纳,获得10
2分钟前
彩色的尔珍完成签到,获得积分10
2分钟前
万能图书馆应助庖丁解柚采纳,获得10
2分钟前
天天快乐应助123456采纳,获得10
2分钟前
2分钟前
2分钟前
123456发布了新的文献求助10
2分钟前
叙温雨发布了新的文献求助10
2分钟前
甜美帅哥发布了新的文献求助10
3分钟前
脑洞疼应助123456采纳,获得10
3分钟前
3分钟前
张宇完成签到,获得积分10
3分钟前
123456发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291497
求助须知:如何正确求助?哪些是违规求助? 4442516
关于积分的说明 13830013
捐赠科研通 4325551
什么是DOI,文献DOI怎么找? 2374353
邀请新用户注册赠送积分活动 1369670
关于科研通互助平台的介绍 1333839