Graph-Augmented Co-Attention Model for Socio-Sequential Recommendation

计算机科学 工作流程 嵌入 图形 人工智能 机器学习 理论计算机科学 数据库
作者
Bin Wu,Xiangnan He,Le Wu,Xue Zhang,Yangdong Ye
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (7): 4039-4051 被引量:9
标识
DOI:10.1109/tsmc.2023.3242308
摘要

A sequential recommendation has become a hot research topic, which seeks to predict the next interesting item for each user based on his action sequence. While previous methods have made many efforts to capture the dynamics of sequential patterns, we contend that they still suffer from two inherent limitations: 1) they fail to model item transition patterns in an efficient and time-sensitive manner and 2) they are unaware of the importance of dynamically capturing social influence, resulting in suboptimal performance. We introduce a new concept dubbed socio-sequential recommendation, where the challenge mainly lies in dynamically modeling social influences and capturing item-to-item transition patterns in a time-sensitive manner. In light of this, we contribute a novel solution named GCARec (short for graph-augmented co-attention model), which takes into account the joint effect of dynamic sequential patterns and dynamic social influences. GCARec decomposes socio-sequential recommendation workflow into two steps. First, we adopt a light graph embedding module to model long-term user preference. Then, we propose a time-sensitive attention mechanism and a social-aware attention mechanism to capture dynamic patterns at sequential-level and social-level, respectively. Extensive experiments have been conducted on eight real-world datasets from different scenarios, demonstrating the superiority of GCARec against several state-of-the-art methods. The codes and datasets have been released at: https://github.com/wubinzzu/GCARec .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhh完成签到,获得积分10
刚刚
SPQR发布了新的文献求助10
1秒前
Voyage发布了新的文献求助10
1秒前
SciGPT应助fzzzzlucy采纳,获得10
3秒前
3秒前
3秒前
Anan完成签到,获得积分10
3秒前
刘若鑫完成签到 ,获得积分10
4秒前
4秒前
lehha完成签到 ,获得积分10
4秒前
6秒前
亮白完成签到,获得积分10
7秒前
科研通AI2S应助yaolei采纳,获得10
8秒前
8秒前
9秒前
飞翔的星尘应助zxc采纳,获得10
10秒前
要减肥的chao完成签到,获得积分10
11秒前
XIECHEN完成签到,获得积分10
12秒前
追寻面包发布了新的文献求助10
13秒前
Mars1998完成签到,获得积分10
14秒前
Gin完成签到 ,获得积分10
14秒前
athena发布了新的文献求助30
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
17秒前
nczpf2010完成签到,获得积分10
18秒前
18秒前
英俊的铭应助Voyage采纳,获得10
19秒前
20秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136581
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782406
捐赠科研通 2443643
什么是DOI,文献DOI怎么找? 1299325
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954