Graph-Augmented Co-Attention Model for Socio-Sequential Recommendation

计算机科学 工作流程 嵌入 图形 人工智能 机器学习 理论计算机科学 数据库
作者
Bin Wu,Xiangnan He,Le Wu,Xue Zhang,Yangdong Ye
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (7): 4039-4051 被引量:27
标识
DOI:10.1109/tsmc.2023.3242308
摘要

A sequential recommendation has become a hot research topic, which seeks to predict the next interesting item for each user based on his action sequence. While previous methods have made many efforts to capture the dynamics of sequential patterns, we contend that they still suffer from two inherent limitations: 1) they fail to model item transition patterns in an efficient and time-sensitive manner and 2) they are unaware of the importance of dynamically capturing social influence, resulting in suboptimal performance. We introduce a new concept dubbed socio-sequential recommendation, where the challenge mainly lies in dynamically modeling social influences and capturing item-to-item transition patterns in a time-sensitive manner. In light of this, we contribute a novel solution named GCARec (short for graph-augmented co-attention model), which takes into account the joint effect of dynamic sequential patterns and dynamic social influences. GCARec decomposes socio-sequential recommendation workflow into two steps. First, we adopt a light graph embedding module to model long-term user preference. Then, we propose a time-sensitive attention mechanism and a social-aware attention mechanism to capture dynamic patterns at sequential-level and social-level, respectively. Extensive experiments have been conducted on eight real-world datasets from different scenarios, demonstrating the superiority of GCARec against several state-of-the-art methods. The codes and datasets have been released at: https://github.com/wubinzzu/GCARec .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研菜菜完成签到,获得积分20
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
幸福的寄云完成签到,获得积分10
2秒前
细菌小裁缝5114关注了科研通微信公众号
2秒前
婷婷的大宝剑完成签到 ,获得积分10
2秒前
yatuitui发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
可爱的函函应助文献达人采纳,获得10
4秒前
4秒前
欢呼黑猫应助keyanning采纳,获得10
4秒前
上官若男应助熊大哥采纳,获得20
4秒前
4秒前
5秒前
5秒前
5秒前
zzq发布了新的文献求助10
5秒前
SS_完成签到,获得积分10
5秒前
科研通AI6.1应助哦啦啦采纳,获得10
6秒前
852应助dzz采纳,获得10
6秒前
6秒前
芒果完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
CodeCraft应助sci来采纳,获得30
7秒前
7秒前
TBHP完成签到,获得积分10
8秒前
Honor发布了新的文献求助30
8秒前
坦率的松发布了新的文献求助10
8秒前
江颖芋发布了新的文献求助10
8秒前
科研通AI2S应助Maisie采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760209
求助须知:如何正确求助?哪些是违规求助? 5523899
关于积分的说明 15396860
捐赠科研通 4897047
什么是DOI,文献DOI怎么找? 2634010
邀请新用户注册赠送积分活动 1582088
关于科研通互助平台的介绍 1537582