亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph-Augmented Co-Attention Model for Socio-Sequential Recommendation

计算机科学 工作流程 嵌入 图形 人工智能 机器学习 理论计算机科学 数据库
作者
Bin Wu,Xiangnan He,Le Wu,Xue Zhang,Yangdong Ye
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (7): 4039-4051 被引量:27
标识
DOI:10.1109/tsmc.2023.3242308
摘要

A sequential recommendation has become a hot research topic, which seeks to predict the next interesting item for each user based on his action sequence. While previous methods have made many efforts to capture the dynamics of sequential patterns, we contend that they still suffer from two inherent limitations: 1) they fail to model item transition patterns in an efficient and time-sensitive manner and 2) they are unaware of the importance of dynamically capturing social influence, resulting in suboptimal performance. We introduce a new concept dubbed socio-sequential recommendation, where the challenge mainly lies in dynamically modeling social influences and capturing item-to-item transition patterns in a time-sensitive manner. In light of this, we contribute a novel solution named GCARec (short for graph-augmented co-attention model), which takes into account the joint effect of dynamic sequential patterns and dynamic social influences. GCARec decomposes socio-sequential recommendation workflow into two steps. First, we adopt a light graph embedding module to model long-term user preference. Then, we propose a time-sensitive attention mechanism and a social-aware attention mechanism to capture dynamic patterns at sequential-level and social-level, respectively. Extensive experiments have been conducted on eight real-world datasets from different scenarios, demonstrating the superiority of GCARec against several state-of-the-art methods. The codes and datasets have been released at: https://github.com/wubinzzu/GCARec .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LV完成签到 ,获得积分10
34秒前
脑洞疼应助catherine采纳,获得10
34秒前
学不完了完成签到 ,获得积分10
41秒前
Dou完成签到,获得积分10
49秒前
54秒前
白华苍松发布了新的文献求助20
1分钟前
Jasper应助白华苍松采纳,获得10
1分钟前
有机分子笼完成签到,获得积分10
1分钟前
Dou关注了科研通微信公众号
1分钟前
1分钟前
catherine发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小马甲应助JJ采纳,获得10
1分钟前
淡定自中发布了新的文献求助10
1分钟前
Yyyyyyyyy发布了新的文献求助10
1分钟前
mama完成签到 ,获得积分10
1分钟前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
JJ发布了新的文献求助10
2分钟前
2分钟前
Nancy0818完成签到 ,获得积分10
2分钟前
科研通AI2S应助ceeray23采纳,获得20
2分钟前
BowieHuang应助cjh采纳,获得10
2分钟前
耶格尔完成签到 ,获得积分10
2分钟前
kikichiu应助ceeray23采纳,获得20
2分钟前
xaopng完成签到,获得积分10
2分钟前
ljx完成签到 ,获得积分10
2分钟前
端庄的曼梅完成签到 ,获得积分10
2分钟前
JJ完成签到,获得积分10
2分钟前
2分钟前
ddrose发布了新的文献求助10
2分钟前
亲爱的安德烈完成签到,获得积分10
3分钟前
安详的从筠完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543150
求助须知:如何正确求助?哪些是违规求助? 4629339
关于积分的说明 14611104
捐赠科研通 4570588
什么是DOI,文献DOI怎么找? 2505813
邀请新用户注册赠送积分活动 1483084
关于科研通互助平台的介绍 1454401