Graph-Augmented Co-Attention Model for Socio-Sequential Recommendation

计算机科学 工作流程 嵌入 图形 人工智能 机器学习 理论计算机科学 数据库
作者
Bin Wu,Xiangnan He,Le Wu,Xue Zhang,Yangdong Ye
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (7): 4039-4051 被引量:9
标识
DOI:10.1109/tsmc.2023.3242308
摘要

A sequential recommendation has become a hot research topic, which seeks to predict the next interesting item for each user based on his action sequence. While previous methods have made many efforts to capture the dynamics of sequential patterns, we contend that they still suffer from two inherent limitations: 1) they fail to model item transition patterns in an efficient and time-sensitive manner and 2) they are unaware of the importance of dynamically capturing social influence, resulting in suboptimal performance. We introduce a new concept dubbed socio-sequential recommendation, where the challenge mainly lies in dynamically modeling social influences and capturing item-to-item transition patterns in a time-sensitive manner. In light of this, we contribute a novel solution named GCARec (short for graph-augmented co-attention model), which takes into account the joint effect of dynamic sequential patterns and dynamic social influences. GCARec decomposes socio-sequential recommendation workflow into two steps. First, we adopt a light graph embedding module to model long-term user preference. Then, we propose a time-sensitive attention mechanism and a social-aware attention mechanism to capture dynamic patterns at sequential-level and social-level, respectively. Extensive experiments have been conducted on eight real-world datasets from different scenarios, demonstrating the superiority of GCARec against several state-of-the-art methods. The codes and datasets have been released at: https://github.com/wubinzzu/GCARec .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
kkkhhh发布了新的文献求助30
2秒前
绿萝完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
文复发布了新的文献求助10
4秒前
寇博翔发布了新的文献求助10
4秒前
谦让慕青发布了新的文献求助10
5秒前
5秒前
5秒前
LBR发布了新的文献求助10
5秒前
2344发布了新的文献求助10
6秒前
7秒前
我不李解发布了新的文献求助10
7秒前
jupi完成签到 ,获得积分10
8秒前
禹山河完成签到 ,获得积分10
8秒前
9秒前
科研通AI2S应助三金采纳,获得10
9秒前
情怀应助叫秋田犬的猫采纳,获得10
10秒前
闪闪寒荷完成签到 ,获得积分10
10秒前
退之完成签到,获得积分10
12秒前
jupi关注了科研通微信公众号
12秒前
英姑应助科研小菜鸡采纳,获得10
13秒前
SYLH应助我不李解采纳,获得10
13秒前
酷波er应助泽灵采纳,获得10
13秒前
14秒前
iceice完成签到,获得积分10
17秒前
黄瑾完成签到,获得积分10
17秒前
愉快的代玉完成签到,获得积分10
17秒前
17秒前
考拉完成签到 ,获得积分10
17秒前
Jasper应助禹山河采纳,获得10
18秒前
mldxy关注了科研通微信公众号
18秒前
18秒前
19秒前
yijian完成签到,获得积分10
19秒前
cheire完成签到,获得积分10
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959051
求助须知:如何正确求助?哪些是违规求助? 3505388
关于积分的说明 11123550
捐赠科研通 3237039
什么是DOI,文献DOI怎么找? 1788976
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802806