Spatiotemporal Detection and Localization of Object Removal Video Forgery with Multiple Feature Extraction and Optimized Residual Network

计算机科学 人工智能 计算机视觉 灰度 特征提取 直方图 特征(语言学) 视频处理 视频去噪 帧(网络) 残余物 模式识别(心理学) RGB颜色模型 视频跟踪 图像(数学) 多视点视频编码 哲学 语言学 算法 电信
作者
CH Lakshmi Kumari,K.V. Prasad
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
标识
DOI:10.1142/s0218001423550029
摘要

Video forgery detection and localization is one of the most important issue due to the advanced editing software that provides strengthen to tools for manipulating the videos. Object based video tampering destroys the originality of the video. The main aim of the video forensic is to eradicate the forgeries from the original video that are useful in various applications. However, the research on detecting and localizing the object based video forgery with advanced techniques still remains the open and challenging issue. Many of the existing techniques have focused only on detecting the forged video under static background that cannot be applicable for detecting the forgery in tampered video. In addition to this, conventional techniques fail to extract the essential features in order to investigate the depth of the video forgery. Hence, this paper brings a novel technique for detecting and localizing the forged video with multiple features. The steps involved in this research are keyframe extraction, pre-processing, feature extraction and finally detection and localization of forged video. Initially, keyframe extraction uses the Gaussian mixture model (GMM) to extract frames from the forged videos. Then, the pre-processing stage is manipulated to convert the RGB frame into a grayscale image. Multi-features need to be extracted from the pre-processed frames to study the nature of the forged videos. In our proposed study, speeded up robust features (SURF), principal compound analysis histogram oriented gradients (PCA-HOG), model based fast digit feature (MBFDF), correlation of adjacent frames (CAF), the prediction residual gradient (PRG) and optical flow gradient (OFG) features are extracted. The dataset used for the proposed approach is collected from REWIND of about 40 forged and 40 authenticated videos. With the help of the DL approach, video forgery can be detected and localized. Thus, this research mainly focuses on detecting and localization of forged video based on the ResNet152V2 model hybrid with the bidirectional gated recurrent unit (Bi-GRU) to attain maximum accuracy and efficiency. The performance of this approach is finally compared with existing approaches in terms of accuracy, precision, F-measure, sensitivity, specificity, false-negative rate (FNR), false discovery rate (FDR), false-positive rate (FPR), Mathew’s correlation coefficient (MCC) and negative predictive value (NPV). The proposed approach assures the performance of 96.17% accuracy, 96% precision, 96.14% F-measure, 96.58% sensitivity, 96.5% specificity, 0.034 FNR, 0.04 FDR, 0.034 FPR, 0.92 MCC and 96% NPV, respectively. Along with is, the mean square error (MSE) and peak-to-signal-noise ratio (PSNR) for the GMM model attained about 104 and 27.95, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
淼漫发布了新的文献求助10
1秒前
啊娴仔发布了新的文献求助10
1秒前
yudandan@CJLU完成签到,获得积分10
1秒前
1秒前
2秒前
打打应助haizz采纳,获得10
3秒前
3秒前
在水一方应助YiWei采纳,获得10
4秒前
4秒前
爆米花应助linmo采纳,获得10
5秒前
5秒前
5秒前
5秒前
wu8577应助科研通管家采纳,获得20
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
袁睿韬应助doin采纳,获得10
6秒前
佳佳应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得50
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
YH应助科研通管家采纳,获得100
6秒前
6秒前
wu8577应助科研通管家采纳,获得20
6秒前
6秒前
完美世界应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
烟花应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
结实的纹完成签到,获得积分10
9秒前
9秒前
斯文败类应助iNk采纳,获得10
9秒前
10秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371