Spatiotemporal Detection and Localization of Object Removal Video Forgery with Multiple Feature Extraction and Optimized Residual Network

计算机科学 人工智能 计算机视觉 灰度 特征提取 直方图 特征(语言学) 视频处理 视频去噪 帧(网络) 残余物 模式识别(心理学) RGB颜色模型 视频跟踪 图像(数学) 多视点视频编码 语言学 电信 哲学 算法
作者
CH Lakshmi Kumari,K.V. Prasad
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
标识
DOI:10.1142/s0218001423550029
摘要

Video forgery detection and localization is one of the most important issue due to the advanced editing software that provides strengthen to tools for manipulating the videos. Object based video tampering destroys the originality of the video. The main aim of the video forensic is to eradicate the forgeries from the original video that are useful in various applications. However, the research on detecting and localizing the object based video forgery with advanced techniques still remains the open and challenging issue. Many of the existing techniques have focused only on detecting the forged video under static background that cannot be applicable for detecting the forgery in tampered video. In addition to this, conventional techniques fail to extract the essential features in order to investigate the depth of the video forgery. Hence, this paper brings a novel technique for detecting and localizing the forged video with multiple features. The steps involved in this research are keyframe extraction, pre-processing, feature extraction and finally detection and localization of forged video. Initially, keyframe extraction uses the Gaussian mixture model (GMM) to extract frames from the forged videos. Then, the pre-processing stage is manipulated to convert the RGB frame into a grayscale image. Multi-features need to be extracted from the pre-processed frames to study the nature of the forged videos. In our proposed study, speeded up robust features (SURF), principal compound analysis histogram oriented gradients (PCA-HOG), model based fast digit feature (MBFDF), correlation of adjacent frames (CAF), the prediction residual gradient (PRG) and optical flow gradient (OFG) features are extracted. The dataset used for the proposed approach is collected from REWIND of about 40 forged and 40 authenticated videos. With the help of the DL approach, video forgery can be detected and localized. Thus, this research mainly focuses on detecting and localization of forged video based on the ResNet152V2 model hybrid with the bidirectional gated recurrent unit (Bi-GRU) to attain maximum accuracy and efficiency. The performance of this approach is finally compared with existing approaches in terms of accuracy, precision, F-measure, sensitivity, specificity, false-negative rate (FNR), false discovery rate (FDR), false-positive rate (FPR), Mathew’s correlation coefficient (MCC) and negative predictive value (NPV). The proposed approach assures the performance of 96.17% accuracy, 96% precision, 96.14% F-measure, 96.58% sensitivity, 96.5% specificity, 0.034 FNR, 0.04 FDR, 0.034 FPR, 0.92 MCC and 96% NPV, respectively. Along with is, the mean square error (MSE) and peak-to-signal-noise ratio (PSNR) for the GMM model attained about 104 and 27.95, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜的薯片完成签到 ,获得积分10
15秒前
阿离完成签到 ,获得积分10
18秒前
shunlibiye完成签到,获得积分10
21秒前
Regina完成签到 ,获得积分10
22秒前
天才大肥猫完成签到 ,获得积分10
22秒前
Christina完成签到,获得积分10
24秒前
A,w携念e行ོ完成签到,获得积分10
27秒前
非我完成签到 ,获得积分10
27秒前
刻苦的新烟完成签到 ,获得积分10
34秒前
明理的乐儿完成签到 ,获得积分10
37秒前
可可可11完成签到 ,获得积分10
43秒前
45秒前
50秒前
Lesterem完成签到 ,获得积分10
57秒前
haochi完成签到,获得积分10
59秒前
doddy发布了新的文献求助10
59秒前
1分钟前
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
danli完成签到 ,获得积分10
1分钟前
gu完成签到 ,获得积分10
1分钟前
theseus发布了新的文献求助10
1分钟前
YJ完成签到,获得积分10
1分钟前
潇潇完成签到 ,获得积分10
1分钟前
John完成签到,获得积分10
1分钟前
DAHove完成签到 ,获得积分10
1分钟前
嗯哼应助阿离采纳,获得20
1分钟前
cphhu完成签到 ,获得积分10
1分钟前
mmiww完成签到,获得积分10
1分钟前
郑洋完成签到 ,获得积分10
1分钟前
Hyacinth完成签到 ,获得积分10
1分钟前
花生米一粒粒完成签到,获得积分10
1分钟前
1分钟前
超体完成签到 ,获得积分10
1分钟前
萧水白完成签到,获得积分10
1分钟前
泡芙不甜完成签到 ,获得积分10
1分钟前
theseus完成签到,获得积分10
1分钟前
aowulan完成签到 ,获得积分10
1分钟前
LZX完成签到 ,获得积分10
1分钟前
hongt05完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072753
求助须知:如何正确求助?哪些是违规求助? 2726386
关于积分的说明 7493908
捐赠科研通 2374311
什么是DOI,文献DOI怎么找? 1258960
科研通“疑难数据库(出版商)”最低求助积分说明 610434
版权声明 596997