Two-Domain Joint Attention Mechanism Based on Sensor Data for Group Activity Recognition

计算机科学 领域(数学分析) 语义学(计算机科学) 人工智能 卷积神经网络 图形 模式识别(心理学) 相关性 理论计算机科学 数据挖掘 机器学习 数学 数学分析 几何学 程序设计语言
作者
Ruohong Huan,Ai Bo,Jia Shu,Peng Chen,Ronghua Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15
标识
DOI:10.1109/tim.2023.3246469
摘要

In this article, a two-domain joint attention mechanism based on sensor data (TJAMSD) for group activity recognition (GAR) is proposed. We build two networks in the semantic domain and data domain as the teacher network and student network. In the data domain, a GAR network based on graph convolutional network (GCN) with group relation graph (GRG) is proposed. In this network, in order to reflect the relationship between individuals, the individual action feature correlation and position correlation in a group are calculated to construct two relation graphs. Then, the two relation graphs are fused to obtain the final GRG. Finally, the GRG and the individual action features obtained by a hybrid convolutional neural network (CNN) and bi-directional long short-term memory (BLSTM) network are used as the input of the GCN to infer the group activity. Besides, a semantic-domain network is constructed by the known individual action semantics and the group activity semantics. A joint attention mechanism based on the data-domain network and semantic-domain network is proposed. The attention weights learned in the semantic-domain network are used to guide the learning of attention weights in the data-domain network, which allocates attention to different individuals. In this way, TJAMSD makes the networks pay more attention to the key individual actions in the group and overcome the interference caused by noncritical individual actions in GAR. Experiments are conducted on two constructed datasets, the Garsensors dataset and the UT-Data-gar dataset. Different group cases are considered in the experiments and the experimental results show that in all cases, GCN with GRG can better express the interaction features of groups and improve the recognition performance. Furthermore, the TJAMSD can effectively suppress the interference of noncritical actions to advance the model robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
踏实迎南完成签到 ,获得积分10
1秒前
1秒前
Chlxa完成签到 ,获得积分10
2秒前
eee丶peng发布了新的文献求助10
2秒前
2秒前
2秒前
FashionBoy应助533采纳,获得10
3秒前
3秒前
Akim应助苯二氮卓采纳,获得10
5秒前
5秒前
震动的帽子完成签到,获得积分10
6秒前
tzy发布了新的文献求助10
6秒前
泉水丁冬2023完成签到,获得积分10
6秒前
WWW完成签到,获得积分20
6秒前
李爱国应助Dprisk采纳,获得10
7秒前
云飞扬完成签到 ,获得积分10
7秒前
SunGuangkai发布了新的文献求助10
8秒前
嘉心糖应助肖申克的舅叔采纳,获得20
8秒前
清心淡如水完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
今天你读文献了吗完成签到,获得积分10
11秒前
11秒前
11秒前
FashionBoy应助调皮秋尽采纳,获得10
12秒前
青鸟飞鱼完成签到,获得积分10
12秒前
爆米花应助孙天成采纳,获得10
13秒前
jinzhen发布了新的文献求助10
13秒前
慧子无语发布了新的文献求助10
13秒前
14秒前
Jasper应助耶耶采纳,获得10
14秒前
季心安发布了新的文献求助30
14秒前
SigRosa发布了新的文献求助10
15秒前
嘟嘟等文章完成签到,获得积分10
15秒前
ibigbird发布了新的文献求助10
15秒前
15秒前
卡卡发布了新的文献求助10
15秒前
稻草人完成签到,获得积分10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
The Bourse of Babylon: market quotations in the astronomical diaries of Babylonia 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942271
关于积分的说明 8507774
捐赠科研通 2617189
什么是DOI,文献DOI怎么找? 1430004
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186