Two-Domain Joint Attention Mechanism Based on Sensor Data for Group Activity Recognition

计算机科学 领域(数学分析) 语义学(计算机科学) 人工智能 卷积神经网络 图形 模式识别(心理学) 相关性 理论计算机科学 数据挖掘 机器学习 数学 数学分析 几何学 程序设计语言
作者
Ruohong Huan,Ai Bo,Jia Shu,Peng Chen,Ronghua Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15
标识
DOI:10.1109/tim.2023.3246469
摘要

In this article, a two-domain joint attention mechanism based on sensor data (TJAMSD) for group activity recognition (GAR) is proposed. We build two networks in the semantic domain and data domain as the teacher network and student network. In the data domain, a GAR network based on graph convolutional network (GCN) with group relation graph (GRG) is proposed. In this network, in order to reflect the relationship between individuals, the individual action feature correlation and position correlation in a group are calculated to construct two relation graphs. Then, the two relation graphs are fused to obtain the final GRG. Finally, the GRG and the individual action features obtained by a hybrid convolutional neural network (CNN) and bi-directional long short-term memory (BLSTM) network are used as the input of the GCN to infer the group activity. Besides, a semantic-domain network is constructed by the known individual action semantics and the group activity semantics. A joint attention mechanism based on the data-domain network and semantic-domain network is proposed. The attention weights learned in the semantic-domain network are used to guide the learning of attention weights in the data-domain network, which allocates attention to different individuals. In this way, TJAMSD makes the networks pay more attention to the key individual actions in the group and overcome the interference caused by noncritical individual actions in GAR. Experiments are conducted on two constructed datasets, the Garsensors dataset and the UT-Data-gar dataset. Different group cases are considered in the experiments and the experimental results show that in all cases, GCN with GRG can better express the interaction features of groups and improve the recognition performance. Furthermore, the TJAMSD can effectively suppress the interference of noncritical actions to advance the model robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暮雪发布了新的文献求助10
刚刚
王sir完成签到,获得积分10
1秒前
1秒前
2秒前
HarrisonChan完成签到,获得积分10
2秒前
2秒前
止咳宝完成签到,获得积分10
4秒前
六六完成签到,获得积分10
5秒前
盈盈发布了新的文献求助30
6秒前
手可摘星辰完成签到,获得积分10
7秒前
纯真含双发布了新的文献求助10
7秒前
纯白色发布了新的文献求助10
7秒前
给我个二硫碘化钾完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
huxinshinn应助飲啖茶采纳,获得100
12秒前
科研通AI2S应助暮雪采纳,获得10
14秒前
17秒前
18秒前
毛毛虫发布了新的文献求助10
19秒前
科研废物完成签到 ,获得积分10
19秒前
所所应助紫气东来采纳,获得50
22秒前
少年锦时asd完成签到,获得积分10
23秒前
洛luo发布了新的文献求助10
24秒前
西因发布了新的文献求助10
24秒前
厐于晏完成签到,获得积分10
26秒前
ysy完成签到 ,获得积分10
28秒前
Bressanone完成签到,获得积分10
29秒前
29秒前
小巧思枫完成签到 ,获得积分10
31秒前
共享精神应助早早采纳,获得10
31秒前
31秒前
123456完成签到,获得积分10
34秒前
欢呼的访梦完成签到,获得积分10
35秒前
桐桐应助厐于晏采纳,获得10
35秒前
研友_VZG7GZ应助keyan采纳,获得10
36秒前
37秒前
蒋若风发布了新的文献求助10
37秒前
37秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600839
求助须知:如何正确求助?哪些是违规求助? 4686362
关于积分的说明 14843382
捐赠科研通 4678240
什么是DOI,文献DOI怎么找? 2538963
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241