Two-Domain Joint Attention Mechanism Based on Sensor Data for Group Activity Recognition

计算机科学 领域(数学分析) 语义学(计算机科学) 人工智能 卷积神经网络 图形 模式识别(心理学) 相关性 理论计算机科学 数据挖掘 机器学习 数学 几何学 数学分析 程序设计语言
作者
Ruohong Huan,Ai Bo,Jia Shu,Peng Chen,Ronghua Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15
标识
DOI:10.1109/tim.2023.3246469
摘要

In this article, a two-domain joint attention mechanism based on sensor data (TJAMSD) for group activity recognition (GAR) is proposed. We build two networks in the semantic domain and data domain as the teacher network and student network. In the data domain, a GAR network based on graph convolutional network (GCN) with group relation graph (GRG) is proposed. In this network, in order to reflect the relationship between individuals, the individual action feature correlation and position correlation in a group are calculated to construct two relation graphs. Then, the two relation graphs are fused to obtain the final GRG. Finally, the GRG and the individual action features obtained by a hybrid convolutional neural network (CNN) and bi-directional long short-term memory (BLSTM) network are used as the input of the GCN to infer the group activity. Besides, a semantic-domain network is constructed by the known individual action semantics and the group activity semantics. A joint attention mechanism based on the data-domain network and semantic-domain network is proposed. The attention weights learned in the semantic-domain network are used to guide the learning of attention weights in the data-domain network, which allocates attention to different individuals. In this way, TJAMSD makes the networks pay more attention to the key individual actions in the group and overcome the interference caused by noncritical individual actions in GAR. Experiments are conducted on two constructed datasets, the Garsensors dataset and the UT-Data-gar dataset. Different group cases are considered in the experiments and the experimental results show that in all cases, GCN with GRG can better express the interaction features of groups and improve the recognition performance. Furthermore, the TJAMSD can effectively suppress the interference of noncritical actions to advance the model robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助科研通管家采纳,获得10
刚刚
刚刚
Owen应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
阿司匹林发布了新的文献求助10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
NexusExplorer应助ycliu采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
1秒前
sleep应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
qing发布了新的文献求助10
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
xzzt完成签到 ,获得积分10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
浮游应助府中园马采纳,获得10
1秒前
sun发布了新的文献求助10
1秒前
春江完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
李爱国应助袁小破采纳,获得10
2秒前
桐桐应助酷炫贞采纳,获得30
3秒前
husi发布了新的文献求助10
3秒前
3秒前
充电宝应助高山和鸟采纳,获得10
3秒前
胡子完成签到,获得积分20
4秒前
Xiaoxiao完成签到,获得积分10
4秒前
吴悦涵完成签到 ,获得积分10
4秒前
yu发布了新的文献求助10
5秒前
斯文败类应助KINGMach采纳,获得10
5秒前
alier发布了新的文献求助30
5秒前
5秒前
酷波er应助小吴采纳,获得10
5秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513050
求助须知:如何正确求助?哪些是违规求助? 4607382
关于积分的说明 14504952
捐赠科研通 4542911
什么是DOI,文献DOI怎么找? 2489237
邀请新用户注册赠送积分活动 1471256
关于科研通互助平台的介绍 1443307