Two-Domain Joint Attention Mechanism Based on Sensor Data for Group Activity Recognition

计算机科学 领域(数学分析) 语义学(计算机科学) 人工智能 卷积神经网络 图形 模式识别(心理学) 相关性 理论计算机科学 数据挖掘 机器学习 数学 几何学 数学分析 程序设计语言
作者
Ruohong Huan,Ai Bo,Jia Shu,Peng Chen,Ronghua Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15
标识
DOI:10.1109/tim.2023.3246469
摘要

In this article, a two-domain joint attention mechanism based on sensor data (TJAMSD) for group activity recognition (GAR) is proposed. We build two networks in the semantic domain and data domain as the teacher network and student network. In the data domain, a GAR network based on graph convolutional network (GCN) with group relation graph (GRG) is proposed. In this network, in order to reflect the relationship between individuals, the individual action feature correlation and position correlation in a group are calculated to construct two relation graphs. Then, the two relation graphs are fused to obtain the final GRG. Finally, the GRG and the individual action features obtained by a hybrid convolutional neural network (CNN) and bi-directional long short-term memory (BLSTM) network are used as the input of the GCN to infer the group activity. Besides, a semantic-domain network is constructed by the known individual action semantics and the group activity semantics. A joint attention mechanism based on the data-domain network and semantic-domain network is proposed. The attention weights learned in the semantic-domain network are used to guide the learning of attention weights in the data-domain network, which allocates attention to different individuals. In this way, TJAMSD makes the networks pay more attention to the key individual actions in the group and overcome the interference caused by noncritical individual actions in GAR. Experiments are conducted on two constructed datasets, the Garsensors dataset and the UT-Data-gar dataset. Different group cases are considered in the experiments and the experimental results show that in all cases, GCN with GRG can better express the interaction features of groups and improve the recognition performance. Furthermore, the TJAMSD can effectively suppress the interference of noncritical actions to advance the model robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
落字成暖完成签到,获得积分10
4秒前
民主湖畔i先生完成签到,获得积分10
4秒前
sprite发布了新的文献求助10
5秒前
hyukhae0809发布了新的文献求助10
5秒前
6秒前
7秒前
123发布了新的文献求助10
7秒前
HJJHJH发布了新的文献求助10
7秒前
7秒前
坚强热狗完成签到 ,获得积分10
8秒前
JUYIN完成签到,获得积分10
9秒前
危机的友绿完成签到,获得积分10
10秒前
小蘑菇应助如意2023采纳,获得10
10秒前
10秒前
慕青应助JackWu采纳,获得10
11秒前
爵士黄瓜发布了新的文献求助10
12秒前
科研通AI5应助踏实晓啸采纳,获得10
12秒前
lzjz发布了新的文献求助10
12秒前
完美世界应助危机的友绿采纳,获得10
14秒前
16秒前
16秒前
16秒前
SciGPT应助那天晚上我竟然采纳,获得10
17秒前
机智的孤兰完成签到 ,获得积分10
17秒前
huihui完成签到,获得积分10
17秒前
柯一一应助Qs2024PG采纳,获得10
19秒前
爆米花应助Qs2024PG采纳,获得10
19秒前
烟花应助Qs2024PG采纳,获得10
19秒前
科研通AI5应助Qs2024PG采纳,获得10
19秒前
hyukhae0809完成签到,获得积分20
19秒前
思源应助Qs2024PG采纳,获得10
19秒前
上官若男应助Qs2024PG采纳,获得10
20秒前
田様应助Qs2024PG采纳,获得10
20秒前
Owen应助Qs2024PG采纳,获得10
20秒前
烤面瓜发布了新的文献求助10
21秒前
butaishao发布了新的文献求助10
22秒前
22秒前
23秒前
代代完成签到,获得积分10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980435
求助须知:如何正确求助?哪些是违规求助? 3524350
关于积分的说明 11221150
捐赠科研通 3261779
什么是DOI,文献DOI怎么找? 1800909
邀请新用户注册赠送积分活动 879476
科研通“疑难数据库(出版商)”最低求助积分说明 807283