Two-Domain Joint Attention Mechanism Based on Sensor Data for Group Activity Recognition

计算机科学 领域(数学分析) 语义学(计算机科学) 人工智能 卷积神经网络 图形 模式识别(心理学) 相关性 理论计算机科学 数据挖掘 机器学习 数学 几何学 数学分析 程序设计语言
作者
Ruohong Huan,Ai Bo,Jia Shu,Peng Chen,Ronghua Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15
标识
DOI:10.1109/tim.2023.3246469
摘要

In this article, a two-domain joint attention mechanism based on sensor data (TJAMSD) for group activity recognition (GAR) is proposed. We build two networks in the semantic domain and data domain as the teacher network and student network. In the data domain, a GAR network based on graph convolutional network (GCN) with group relation graph (GRG) is proposed. In this network, in order to reflect the relationship between individuals, the individual action feature correlation and position correlation in a group are calculated to construct two relation graphs. Then, the two relation graphs are fused to obtain the final GRG. Finally, the GRG and the individual action features obtained by a hybrid convolutional neural network (CNN) and bi-directional long short-term memory (BLSTM) network are used as the input of the GCN to infer the group activity. Besides, a semantic-domain network is constructed by the known individual action semantics and the group activity semantics. A joint attention mechanism based on the data-domain network and semantic-domain network is proposed. The attention weights learned in the semantic-domain network are used to guide the learning of attention weights in the data-domain network, which allocates attention to different individuals. In this way, TJAMSD makes the networks pay more attention to the key individual actions in the group and overcome the interference caused by noncritical individual actions in GAR. Experiments are conducted on two constructed datasets, the Garsensors dataset and the UT-Data-gar dataset. Different group cases are considered in the experiments and the experimental results show that in all cases, GCN with GRG can better express the interaction features of groups and improve the recognition performance. Furthermore, the TJAMSD can effectively suppress the interference of noncritical actions to advance the model robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助50
1秒前
znq051210发布了新的文献求助10
1秒前
3秒前
4秒前
大模型应助高贵宛海采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
核桃应助科研通管家采纳,获得10
6秒前
彭于彦祖应助科研通管家采纳,获得200
6秒前
6秒前
天然应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
今后应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
DijiaXu应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
leaolf应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
江南烟雨如笙完成签到 ,获得积分10
7秒前
林途发布了新的文献求助10
8秒前
Wink完成签到 ,获得积分10
8秒前
9秒前
kaede完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
科研通AI5应助deng采纳,获得10
13秒前
自由的小土豆完成签到,获得积分10
13秒前
西瓜发布了新的文献求助30
16秒前
Owen应助allenise采纳,获得10
16秒前
漱石枕流完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131087
求助须知:如何正确求助?哪些是违规求助? 4333112
关于积分的说明 13499238
捐赠科研通 4169825
什么是DOI,文献DOI怎么找? 2285943
邀请新用户注册赠送积分活动 1286868
关于科研通互助平台的介绍 1227780