Two-Domain Joint Attention Mechanism Based on Sensor Data for Group Activity Recognition

计算机科学 领域(数学分析) 语义学(计算机科学) 人工智能 卷积神经网络 图形 模式识别(心理学) 相关性 理论计算机科学 数据挖掘 机器学习 数学 几何学 数学分析 程序设计语言
作者
Ruohong Huan,Ai Bo,Jia Shu,Peng Chen,Ronghua Liang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15
标识
DOI:10.1109/tim.2023.3246469
摘要

In this article, a two-domain joint attention mechanism based on sensor data (TJAMSD) for group activity recognition (GAR) is proposed. We build two networks in the semantic domain and data domain as the teacher network and student network. In the data domain, a GAR network based on graph convolutional network (GCN) with group relation graph (GRG) is proposed. In this network, in order to reflect the relationship between individuals, the individual action feature correlation and position correlation in a group are calculated to construct two relation graphs. Then, the two relation graphs are fused to obtain the final GRG. Finally, the GRG and the individual action features obtained by a hybrid convolutional neural network (CNN) and bi-directional long short-term memory (BLSTM) network are used as the input of the GCN to infer the group activity. Besides, a semantic-domain network is constructed by the known individual action semantics and the group activity semantics. A joint attention mechanism based on the data-domain network and semantic-domain network is proposed. The attention weights learned in the semantic-domain network are used to guide the learning of attention weights in the data-domain network, which allocates attention to different individuals. In this way, TJAMSD makes the networks pay more attention to the key individual actions in the group and overcome the interference caused by noncritical individual actions in GAR. Experiments are conducted on two constructed datasets, the Garsensors dataset and the UT-Data-gar dataset. Different group cases are considered in the experiments and the experimental results show that in all cases, GCN with GRG can better express the interaction features of groups and improve the recognition performance. Furthermore, the TJAMSD can effectively suppress the interference of noncritical actions to advance the model robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助CHUANSHUIRUYUN采纳,获得10
1秒前
碧蓝翅膀发布了新的文献求助10
3秒前
3秒前
3秒前
灯火阑珊曦完成签到,获得积分10
3秒前
七月流火应助迅速的鹤采纳,获得100
5秒前
樱铃发布了新的文献求助10
5秒前
6秒前
Orange应助无辜的谷雪采纳,获得10
8秒前
9秒前
9秒前
852应助你嵙这个期刊没买采纳,获得10
9秒前
9秒前
9秒前
9秒前
Owen应助你嵙这个期刊没买采纳,获得10
9秒前
9秒前
9秒前
9秒前
我要吃鱼发布了新的文献求助10
11秒前
简单的傲玉完成签到,获得积分20
11秒前
激动的项链完成签到,获得积分10
12秒前
12秒前
LuckyM发布了新的文献求助10
13秒前
13秒前
干净的冷安完成签到,获得积分10
14秒前
lynn221204发布了新的文献求助10
14秒前
14秒前
15秒前
17秒前
17秒前
18秒前
科研通AI6应助wait采纳,获得10
18秒前
呱呱完成签到 ,获得积分10
18秒前
eno1009发布了新的文献求助20
19秒前
如意蚂蚁完成签到,获得积分10
21秒前
21秒前
乘风破浪发布了新的文献求助10
22秒前
CHUANSHUIRUYUN完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642578
关于积分的说明 14668531
捐赠科研通 4583986
什么是DOI,文献DOI怎么找? 2514487
邀请新用户注册赠送积分活动 1488830
关于科研通互助平台的介绍 1459454