化学
催化作用
法拉第效率
电化学
电催化剂
电解
金属
电流密度
电极
兴奋剂
交换电流密度
无机化学
纳米技术
物理化学
光电子学
有机化学
电解质
材料科学
物理
量子力学
塔菲尔方程
作者
Pengsong Li,Jiahui Bi,Jiyuan Liu,Yong Wang,Xinchen Kang,Xiaofu Sun,Jianling Zhang,Zhimin Liu,Qinggong Zhu,Buxing Han
摘要
Large-current electrolysis of CO2 to multi-carbon (C2+) products is critical to realize the industrial application of CO2 conversion. However, the poor binding strength of *CO intermediates on the catalyst surface induces multiple competing pathways, which hinder the C2+ production. Herein, we report that p-d orbital hybridization induced by Ga-doped Cu (CuGa) could promote efficient CO2 electrocatalysis to C2+ products at ampere-level current density. It was found that CuGa exhibited the highest C2+ productivity with a remarkable Faradaic efficiency (FE) of 81.5% at a current density of 0.9 A/cm2, and the potential at such a high current density was -1.07 V versus reversible hydrogen electrode. At 1.1 A/cm2, the catalyst still maintained a high C2+ productivity with an FE of 76.9%. Experimental and theoretical studies indicated that the excellent performance of CuGa results from the p-d hybridization of Cu and Ga, which not only enriches reactive sites but also enhances the binding strength of the *CO intermediate and facilitates C-C coupling. The p-d hybridization strategy can be extended to other p-block metal-doped Cu catalysts, such as CuAl and CuGe, to boost CO2 electroreduction for C2+ production. As far as we know, this is the first work to promote electrochemical CO2 reduction reaction to generate the C2+ product by p-d orbital hybridization interaction using a p-block metal-doped Cu catalyst.
科研通智能强力驱动
Strongly Powered by AbleSci AI