Dual-channel graph contrastive learning for self-supervised graph-level representation learning

计算机科学 图形 判别式 人工智能 特征学习 半监督学习 理论计算机科学 机器学习 模式识别(心理学)
作者
Zhenfei Luo,Yixiang Dong,Qinghua Zheng,Huan Liu,Minnan Luo
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:139: 109448-109448 被引量:16
标识
DOI:10.1016/j.patcog.2023.109448
摘要

Self-supervised graph-level representation learning aims to learn discriminative representations for subgraphs or entire graphs without human-curated labels. Recently, graph contrastive learning (GCL) methods have revolutionized this field and achieved state-of-the-art results in various downstream tasks. Nonetheless, current GCL models are mostly based on simple node-level information aggregation operations and fail to reveal various substructures from input graphs. Moreover, to perform graph-graph contrastive training, they often involve well-designed graph augmentation, which is expensive and requires extensive expert efforts. Here, we propose a novel GCL framework, namely DualGCL, for self-supervised graph-level representation learning. For fine-grained local information incorporation, we first present an adaptive hierarchical aggregation process with a differentiable Transformer-based aggregator. Then, to efficiently learn graph-level discriminative representations, we introduce a dual-channel contrastive learning process in a multi-granularity and augmentation-free contrasting mode. When tested empirically on six popular graph classification benchmarks, our DualGCL achieves better or comparable performance than various strong baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王小平完成签到,获得积分10
刚刚
1秒前
輓楓完成签到,获得积分10
2秒前
2秒前
HUO发布了新的文献求助10
2秒前
张张张完成签到,获得积分10
2秒前
5秒前
5秒前
Z17完成签到,获得积分10
5秒前
luct发布了新的文献求助10
6秒前
CodeCraft应助寒鸦浮水采纳,获得10
10秒前
半富半莲发布了新的文献求助10
10秒前
HUO完成签到,获得积分10
10秒前
12秒前
luct完成签到,获得积分10
12秒前
在水一方应助二指弹采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
星辰大海应助without采纳,获得10
14秒前
小胖爱学习完成签到,获得积分10
15秒前
zhenghang发布了新的文献求助10
16秒前
大地上的鱼完成签到,获得积分10
17秒前
Cheney发布了新的文献求助10
18秒前
半富半莲完成签到,获得积分10
19秒前
flj7038完成签到,获得积分0
20秒前
潜龙发布了新的文献求助10
21秒前
完美世界应助zhangwansen采纳,获得10
21秒前
22秒前
can完成签到,获得积分10
22秒前
梧桐应助Ashley采纳,获得10
24秒前
二指弹发布了新的文献求助10
26秒前
汉堡包应助我就是KKKK采纳,获得10
26秒前
隐形曼青应助Xulun采纳,获得10
27秒前
烟花应助无语的麦片采纳,获得10
28秒前
娃娃菜妮完成签到 ,获得积分10
29秒前
谨慎鞅完成签到,获得积分10
29秒前
自由从筠完成签到 ,获得积分10
29秒前
32秒前
32秒前
网友依旧完成签到,获得积分10
33秒前
浮雨微清完成签到,获得积分10
35秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010682
求助须知:如何正确求助?哪些是违规求助? 3550411
关于积分的说明 11305615
捐赠科研通 3284751
什么是DOI,文献DOI怎么找? 1810846
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499