Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging

恒流 健康状况 常量(计算机编程) 电池(电) 瞬态(计算机编程) 卷积神经网络 电压 人工神经网络 估计员 人工智能 电气工程 计算机科学 物理 工程类 功率(物理) 程序设计语言 操作系统 统计 量子力学 数学
作者
Haokai Ruan,Zhongbao Wei,Wentao Shang,Xuechao Wang,Haibo He
出处
期刊:Applied Energy [Elsevier]
卷期号:336: 120751-120751 被引量:21
标识
DOI:10.1016/j.apenergy.2023.120751
摘要

State of health (SOH) estimation is essential to the health diagnostic of lithium-ion battery. The data-driven approach with charging feature extraction is promising for online SOH estimation and has been widely explored over years. However, their deployment can be barriered by the lack of complete charging data in real-world applications. Motivated by this, this paper proposes an artificial intelligence-based SOH estimator using the transient phase between constant current (CC) and constant voltage (CV) charging, which is easily obtained in real-world charging scenarios. Specifically, a convolutional neural network (CNN) model is proposed to explain the relationship between the charging data and the SOH. Following this endeavor, the transfer learning is exploited for model mitigation and SOH estimation on different battery types, relying on much reduced amount of data for efficient CNN model re-training. The validation experiments are conducted based on the aging data obtained on LiNiCoAlO2 (NCA) and LiCoO2 (LCO) cells. Results suggest that the proposed method realizes accurate SOH estimation requiring only a short segment from the CC-CV transient phase, so that can meet a broad range of real-world charging scenarios. Moreover, the efficient model transfer promises expected performance with different battery types. The short version of the paper was presented at ICAE2021, Nov 29 - Dec 5, 2021. This paper is a substantial extension of the short version of the conference paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
花玥鹿完成签到,获得积分10
刚刚
cybbbbbb完成签到,获得积分10
刚刚
咳咳完成签到,获得积分10
刚刚
1秒前
SciGPT应助眼睛大的鑫磊采纳,获得10
1秒前
1秒前
Fareth完成签到,获得积分10
1秒前
领导范儿应助故意的绿竹采纳,获得10
1秒前
1秒前
复杂谷蓝完成签到 ,获得积分10
1秒前
2秒前
迟大猫应助于某人采纳,获得10
2秒前
qingkong发布了新的文献求助10
3秒前
3秒前
3秒前
细腻白柏完成签到,获得积分10
3秒前
3秒前
麦满分完成签到,获得积分10
4秒前
长度2到发布了新的文献求助10
4秒前
Alicia完成签到,获得积分10
5秒前
西瓜大虫完成签到,获得积分10
5秒前
害羞聋五发布了新的文献求助10
6秒前
prosperp完成签到,获得积分0
6秒前
Hongsong完成签到,获得积分20
6秒前
prosperp应助背侧丘脑采纳,获得10
7秒前
好好发布了新的文献求助10
7秒前
gaos发布了新的文献求助10
7秒前
einuo发布了新的文献求助10
8秒前
001完成签到,获得积分20
8秒前
李健应助阔达萧采纳,获得10
8秒前
陆离发布了新的文献求助10
8秒前
9秒前
66应助雪白红紫采纳,获得10
9秒前
英俊的铭应助东郭南松采纳,获得10
9秒前
YANG完成签到 ,获得积分10
10秒前
冷酷哈密瓜完成签到,获得积分10
11秒前
岁月流年完成签到,获得积分10
11秒前
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678