Feature Alignment in Anchor-Free Object Detection

计算机科学 人工智能 目标检测 模式识别(心理学) 帕斯卡(单位) 特征(语言学) 特征提取 计算机视觉 语言学 哲学 程序设计语言
作者
Feng Gao,Yeyun Cai,Fang Deng,Chengpu Yu,Jie Chen
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3799-3810 被引量:7
标识
DOI:10.1109/tcsvt.2023.3241993
摘要

Most anchor-free methods perform object detection using dense recommendation, which assumes that one point can simultaneously conduct accurate category prediction and regression estimation. However, due to different task drivers, valid features for classification and regression may locate at distinct areas in the training phase. This problem is called feature misalignment. To solve it, we propose a new feature alignment method based on anchor-free object detector. Firstly, a global receptive field adaptor (G-RFA) is designed by incorporating the feature pyramid networks (FPN) with the global attention mechanism, and forward features are further fine-tuned with a deformable-subnet (De-Subnet) to remove the influence of redundant contextual information. Then, a new feature filter strategy with a misalignment score is proposed to guide the network to focus on sampling points with aligned features. In addition, we establish mutually independent multi-layer quality distributions to model the priori information of an object on different FPN levels. Equipped with our method, the classification and regression features are aligned, and the generated foreground weight map converges to the centers of classification and regression heatmaps. Experimental results show that without bells and whistles, our method achieves 49.3% AP on MS COCO test-dev under the default 2x training schedule, outperforming related methods. Besides, experiments on PASCAL VOC demonstrate the generalization ability of our method. Code is available at https://github.com/GFENGG/featurealign.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汪鸡毛完成签到 ,获得积分10
2秒前
3秒前
1233330完成签到,获得积分10
3秒前
4秒前
不敢装睡发布了新的文献求助10
5秒前
ally完成签到,获得积分10
6秒前
changyixin'发布了新的文献求助30
8秒前
monned完成签到 ,获得积分10
10秒前
秋qiu完成签到,获得积分10
10秒前
科研通AI6应助顺心的若雁采纳,获得10
11秒前
Sg完成签到,获得积分10
11秒前
御景风完成签到,获得积分10
11秒前
Ono完成签到,获得积分10
13秒前
15秒前
JamesPei应助南南采纳,获得30
16秒前
孤独手机完成签到 ,获得积分10
19秒前
徐三百完成签到,获得积分10
20秒前
不敢装睡发布了新的文献求助10
21秒前
Hou完成签到 ,获得积分10
23秒前
JosephLee完成签到 ,获得积分10
27秒前
隐形曼青应助来不及丨采纳,获得10
28秒前
29秒前
小刺猬完成签到,获得积分10
29秒前
自信向梦完成签到,获得积分10
30秒前
的呀呀发布了新的文献求助10
34秒前
科研通AI5应助不敢装睡采纳,获得10
34秒前
CR7应助发sci的女人采纳,获得20
35秒前
123完成签到,获得积分10
35秒前
38秒前
eltiempo完成签到 ,获得积分10
39秒前
changyixin'发布了新的文献求助10
39秒前
香蕉觅云应助来不及丨采纳,获得10
40秒前
黄任行完成签到,获得积分10
40秒前
默默白开水完成签到 ,获得积分10
40秒前
寒冷寻桃完成签到 ,获得积分10
41秒前
zzzhhh发布了新的文献求助10
41秒前
42秒前
单薄绿竹完成签到,获得积分10
42秒前
小马甲应助读行千万采纳,获得10
43秒前
蓝天应助徐三百采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4544955
求助须知:如何正确求助?哪些是违规求助? 3976784
关于积分的说明 12315082
捐赠科研通 3644907
什么是DOI,文献DOI怎么找? 2007274
邀请新用户注册赠送积分活动 1042819
科研通“疑难数据库(出版商)”最低求助积分说明 931713