Feature Alignment in Anchor-Free Object Detection

计算机科学 人工智能 目标检测 模式识别(心理学) 帕斯卡(单位) 特征(语言学) 特征提取 计算机视觉 语言学 哲学 程序设计语言
作者
Feng Gao,Yeyun Cai,Fang Deng,Chengpu Yu,Jie Chen
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3799-3810 被引量:7
标识
DOI:10.1109/tcsvt.2023.3241993
摘要

Most anchor-free methods perform object detection using dense recommendation, which assumes that one point can simultaneously conduct accurate category prediction and regression estimation. However, due to different task drivers, valid features for classification and regression may locate at distinct areas in the training phase. This problem is called feature misalignment. To solve it, we propose a new feature alignment method based on anchor-free object detector. Firstly, a global receptive field adaptor (G-RFA) is designed by incorporating the feature pyramid networks (FPN) with the global attention mechanism, and forward features are further fine-tuned with a deformable-subnet (De-Subnet) to remove the influence of redundant contextual information. Then, a new feature filter strategy with a misalignment score is proposed to guide the network to focus on sampling points with aligned features. In addition, we establish mutually independent multi-layer quality distributions to model the priori information of an object on different FPN levels. Equipped with our method, the classification and regression features are aligned, and the generated foreground weight map converges to the centers of classification and regression heatmaps. Experimental results show that without bells and whistles, our method achieves 49.3% AP on MS COCO test-dev under the default 2x training schedule, outperforming related methods. Besides, experiments on PASCAL VOC demonstrate the generalization ability of our method. Code is available at https://github.com/GFENGG/featurealign.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lemenchichi完成签到,获得积分10
刚刚
xdy完成签到 ,获得积分10
1秒前
1秒前
tt完成签到,获得积分10
1秒前
和谐的映秋完成签到,获得积分10
2秒前
哭泣海雪完成签到 ,获得积分10
3秒前
含蓄的孤丝完成签到,获得积分10
3秒前
kento完成签到,获得积分0
3秒前
Mammon完成签到 ,获得积分10
4秒前
4秒前
嘟嘟豆806完成签到 ,获得积分10
4秒前
大模型应助monkey1976采纳,获得10
4秒前
6秒前
鲤鱼怀绿发布了新的文献求助10
6秒前
诱导效应发布了新的文献求助10
6秒前
kento发布了新的文献求助50
6秒前
8R60d8应助RyanNeo采纳,获得10
6秒前
情怀应助csdv采纳,获得10
6秒前
jayliu完成签到,获得积分10
6秒前
kyt_tt完成签到,获得积分10
7秒前
大模型应助冷傲迎梦采纳,获得10
7秒前
共渡完成签到,获得积分10
8秒前
8秒前
小胡完成签到,获得积分10
8秒前
哭泣海雪关注了科研通微信公众号
8秒前
柠檬不萌完成签到,获得积分10
8秒前
wax发布了新的文献求助10
9秒前
大白完成签到,获得积分20
9秒前
闪闪落雁完成签到,获得积分10
9秒前
青羽落霞完成签到 ,获得积分10
9秒前
10秒前
热心豁完成签到,获得积分10
10秒前
陈少华发布了新的文献求助10
11秒前
君霄完成签到,获得积分10
11秒前
man完成签到 ,获得积分10
11秒前
老婆婆不讲理完成签到,获得积分10
12秒前
山河完成签到,获得积分10
12秒前
领导范儿应助Oo。采纳,获得10
12秒前
科研小白完成签到,获得积分10
12秒前
颖火虫发布了新的文献求助10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950076
求助须知:如何正确求助?哪些是违规求助? 3495418
关于积分的说明 11077056
捐赠科研通 3225984
什么是DOI,文献DOI怎么找? 1783357
邀请新用户注册赠送积分活动 867663
科研通“疑难数据库(出版商)”最低求助积分说明 800855