激光线宽
共振(粒子物理)
光学
折射率
功勋
电介质
瑞利散射
偶极子
衍射
材料科学
光电子学
物理
原子物理学
激光器
量子力学
作者
Shijuan Tu,Xinxin Liu,Kunlin Liang,Qin Fu,Yuanli Wang,Qingguo Du,Zhengying Li
标识
DOI:10.1088/1361-6463/acb8c3
摘要
Abstract Recently, improvement of the sensing performance of refractive index sensors using the weak far-field radiation and strong local field enhancement properties of toroidal dipole resonances has been intensively studied. Transmission/reflection spectra with significant narrow linewidth resonance have a vital effect in improving the sensing performance. However, a narrower linewidth always leads to smaller modulation depth of the resonance, which hinders the sensing performance to be improved for experiments. In this paper, we design an ultrathin all-dielectric asymmetric X -type metasurface array, where an extremely narrow linewidth and high modulation depth of transmission resonance in the near-infrared have been demonstrated with Mie lattice resonance formed by the coupling of the toroidal dipole with Rayleigh anomalous diffraction. With optimized structure parameters, a transmission dip with a full width at half-maximum as narrow as 0.061 nm and a modulation depth as high as 99.24% are achieved at a wavelength of 943.33 nm with a corresponding Q factor of 15464. According to the analysis of the displacement current distributions and the scattered powers in the far field at the resonant and nonresonant wavelengths, it is confirmed that the narrow linewidth resonance originates from the coupling of the toroidal dipole with Rayleigh anomalous diffraction. A sensitivity and a figure of merit of 321 nm RIU −1 and 5262 RIU −1 are numerically demonstrated respectively for a refractive index sensor based on the all-dielectric asymmetric X -type metasurface array.
科研通智能强力驱动
Strongly Powered by AbleSci AI