Physics-Informed Neural Networks and their Implementation in MATLAB

MATLAB语言 人工神经网络 计算机科学 偏微分方程 人工智能 工具箱 算法 数学优化 数学 数学分析 操作系统 程序设计语言
作者
Mohie M. Alqezweeni,Vladimir Gorbachenko,Zoya A. Karmanova
标识
DOI:10.1109/iccitm56309.2022.10031685
摘要

An analysis was made of physics-informed neural networks used to solve partial differential equations. The prospects for the implementation of physics-informed neural networks in the MATLAB system are shown. An algorithm for solving partial differential equations in MATLAB using physics-informed neural networks has been developed. On the example of a model problem described by the Poisson equation, physics-informed neural networks were implemented and studied, which showed that MATLAB can be successfully used to implement such networks. MATLAB made it possible to solve the Poisson equation up to the mean square value of the loss function equal to 0.01. The best results were obtained by networks with a small number of layers (3–4) and a sufficiently large number of neurons in each layer (50–100). Comparison with known results showed that MATLAB was inferior to TensorFlow in terms of learning speed. The application of the Optimization Toolbox MATLAB for the implementation of the L-BFGS quasi-Newtonian learning algorithm for physics-informed neural networks was studied. The quasi-Newtonian algorithm makes it possible to increase the accuracy of solving the problem, but requires a lot of training time. As further research, it is recommended to expand the capabilities of the Deep Learning Toolbox by including quasi-Newtonian learning algorithms, in particular, the Levenberg-Marquard algorithm, and new neural network architectures, for example, networks of radial basis functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
李特冷发布了新的文献求助10
1秒前
zlenetr发布了新的文献求助10
2秒前
激情的晓博完成签到,获得积分10
2秒前
CodeCraft应助catbird采纳,获得10
2秒前
chen发布了新的文献求助10
2秒前
斑鸠发布了新的文献求助20
3秒前
dudu发布了新的文献求助30
3秒前
3秒前
gu发布了新的文献求助10
4秒前
希希发布了新的文献求助10
4秒前
小石头完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助150
5秒前
ani发布了新的文献求助10
7秒前
英姑应助Sam十九采纳,获得10
8秒前
8秒前
小马甲应助莫愁采纳,获得10
9秒前
小夏发布了新的文献求助10
9秒前
眯眯眼的忆山完成签到,获得积分10
11秒前
daliu完成签到,获得积分0
12秒前
12秒前
LIJIngcan发布了新的文献求助10
13秒前
小虫虫完成签到,获得积分10
13秒前
13秒前
丘比特应助ZiyinChen采纳,获得10
13秒前
机灵的海莲关注了科研通微信公众号
14秒前
15秒前
大个应助dudu采纳,获得30
15秒前
量子星尘发布了新的文献求助150
16秒前
16秒前
WoeL.Aug.11完成签到 ,获得积分10
18秒前
源缘发布了新的文献求助10
18秒前
18秒前
Hmzek发布了新的文献求助10
18秒前
LIJIngcan完成签到,获得积分10
20秒前
20秒前
aaaa完成签到,获得积分10
21秒前
香蕉觅云应助peace采纳,获得10
22秒前
今后应助ljf采纳,获得10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132277
求助须知:如何正确求助?哪些是违规求助? 4333736
关于积分的说明 13502006
捐赠科研通 4170755
什么是DOI,文献DOI怎么找? 2286630
邀请新用户注册赠送积分活动 1287527
关于科研通互助平台的介绍 1228447