已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Physics-Informed Neural Networks and their Implementation in MATLAB

MATLAB语言 人工神经网络 计算机科学 偏微分方程 人工智能 工具箱 算法 数学优化 数学 数学分析 操作系统 程序设计语言
作者
Mohie M. Alqezweeni,Vladimir Gorbachenko,Zoya A. Karmanova
标识
DOI:10.1109/iccitm56309.2022.10031685
摘要

An analysis was made of physics-informed neural networks used to solve partial differential equations. The prospects for the implementation of physics-informed neural networks in the MATLAB system are shown. An algorithm for solving partial differential equations in MATLAB using physics-informed neural networks has been developed. On the example of a model problem described by the Poisson equation, physics-informed neural networks were implemented and studied, which showed that MATLAB can be successfully used to implement such networks. MATLAB made it possible to solve the Poisson equation up to the mean square value of the loss function equal to 0.01. The best results were obtained by networks with a small number of layers (3–4) and a sufficiently large number of neurons in each layer (50–100). Comparison with known results showed that MATLAB was inferior to TensorFlow in terms of learning speed. The application of the Optimization Toolbox MATLAB for the implementation of the L-BFGS quasi-Newtonian learning algorithm for physics-informed neural networks was studied. The quasi-Newtonian algorithm makes it possible to increase the accuracy of solving the problem, but requires a lot of training time. As further research, it is recommended to expand the capabilities of the Deep Learning Toolbox by including quasi-Newtonian learning algorithms, in particular, the Levenberg-Marquard algorithm, and new neural network architectures, for example, networks of radial basis functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助lllttt采纳,获得10
刚刚
饱满的归尘完成签到,获得积分10
刚刚
wure10完成签到 ,获得积分10
刚刚
刚刚
2秒前
青山发布了新的文献求助200
2秒前
ZIJUNZHAO发布了新的文献求助10
3秒前
蹈死不顾关注了科研通微信公众号
4秒前
4秒前
wanci应助萤lueluelue采纳,获得50
4秒前
6秒前
6秒前
平淡汽车发布了新的文献求助10
6秒前
阳光飞风发布了新的文献求助10
6秒前
大模型应助THEO采纳,获得10
7秒前
完美世界应助xjx采纳,获得80
7秒前
项海目龙发布了新的文献求助10
7秒前
水蜜桃完成签到 ,获得积分10
8秒前
zx完成签到,获得积分10
9秒前
含蓄的沂发布了新的文献求助10
9秒前
许愿完成签到 ,获得积分10
12秒前
13秒前
15秒前
尊敬飞鸟完成签到 ,获得积分10
15秒前
隐形曼青应助能干的鞅采纳,获得10
16秒前
小高的茯苓糕完成签到,获得积分10
18秒前
19秒前
萤lueluelue发布了新的文献求助50
19秒前
20秒前
ZIJUNZHAO完成签到,获得积分10
22秒前
Derson完成签到,获得积分10
22秒前
hhh发布了新的文献求助10
22秒前
lllttt发布了新的文献求助10
24秒前
25秒前
25秒前
张aa发布了新的文献求助20
26秒前
小白白发布了新的文献求助10
30秒前
CGBIO完成签到,获得积分10
31秒前
midokaori发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956731
求助须知:如何正确求助?哪些是违规求助? 3502835
关于积分的说明 11110432
捐赠科研通 3233801
什么是DOI,文献DOI怎么找? 1787571
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172