Physics-Informed Neural Networks and their Implementation in MATLAB

MATLAB语言 人工神经网络 计算机科学 偏微分方程 人工智能 工具箱 算法 数学优化 数学 数学分析 操作系统 程序设计语言
作者
Mohie M. Alqezweeni,Vladimir Gorbachenko,Zoya A. Karmanova
标识
DOI:10.1109/iccitm56309.2022.10031685
摘要

An analysis was made of physics-informed neural networks used to solve partial differential equations. The prospects for the implementation of physics-informed neural networks in the MATLAB system are shown. An algorithm for solving partial differential equations in MATLAB using physics-informed neural networks has been developed. On the example of a model problem described by the Poisson equation, physics-informed neural networks were implemented and studied, which showed that MATLAB can be successfully used to implement such networks. MATLAB made it possible to solve the Poisson equation up to the mean square value of the loss function equal to 0.01. The best results were obtained by networks with a small number of layers (3–4) and a sufficiently large number of neurons in each layer (50–100). Comparison with known results showed that MATLAB was inferior to TensorFlow in terms of learning speed. The application of the Optimization Toolbox MATLAB for the implementation of the L-BFGS quasi-Newtonian learning algorithm for physics-informed neural networks was studied. The quasi-Newtonian algorithm makes it possible to increase the accuracy of solving the problem, but requires a lot of training time. As further research, it is recommended to expand the capabilities of the Deep Learning Toolbox by including quasi-Newtonian learning algorithms, in particular, the Levenberg-Marquard algorithm, and new neural network architectures, for example, networks of radial basis functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
昨日长河发布了新的文献求助10
刚刚
RoadWatcher完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
jx关注了科研通微信公众号
3秒前
玫瑰发布了新的文献求助10
5秒前
5秒前
阿橘发布了新的文献求助10
6秒前
Cristoal发布了新的文献求助30
6秒前
红叶发布了新的文献求助10
6秒前
Lucas应助LiShin采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
左幻竹发布了新的文献求助10
8秒前
空灵完成签到,获得积分10
8秒前
阿木木发布了新的文献求助10
9秒前
10秒前
atonnng发布了新的文献求助10
10秒前
踏实志泽完成签到,获得积分10
10秒前
缪甲烷完成签到,获得积分10
10秒前
10秒前
机灵旭尧发布了新的文献求助10
11秒前
领导范儿应助vicky采纳,获得10
11秒前
我是老大应助NNUsusan采纳,获得10
11秒前
12秒前
Adon完成签到,获得积分10
12秒前
YIXIN发布了新的文献求助10
12秒前
13秒前
13秒前
91发布了新的文献求助10
14秒前
金金金完成签到,获得积分10
15秒前
左幻竹完成签到,获得积分10
16秒前
16秒前
木木发布了新的文献求助10
18秒前
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461701
求助须知:如何正确求助?哪些是违规求助? 3055391
关于积分的说明 9047754
捐赠科研通 2745178
什么是DOI,文献DOI怎么找? 1506027
科研通“疑难数据库(出版商)”最低求助积分说明 695973
邀请新用户注册赠送积分活动 695411