Physics-Informed Neural Networks and their Implementation in MATLAB

MATLAB语言 人工神经网络 计算机科学 偏微分方程 人工智能 工具箱 算法 数学优化 数学 数学分析 操作系统 程序设计语言
作者
Mohie M. Alqezweeni,Vladimir Gorbachenko,Zoya A. Karmanova
标识
DOI:10.1109/iccitm56309.2022.10031685
摘要

An analysis was made of physics-informed neural networks used to solve partial differential equations. The prospects for the implementation of physics-informed neural networks in the MATLAB system are shown. An algorithm for solving partial differential equations in MATLAB using physics-informed neural networks has been developed. On the example of a model problem described by the Poisson equation, physics-informed neural networks were implemented and studied, which showed that MATLAB can be successfully used to implement such networks. MATLAB made it possible to solve the Poisson equation up to the mean square value of the loss function equal to 0.01. The best results were obtained by networks with a small number of layers (3–4) and a sufficiently large number of neurons in each layer (50–100). Comparison with known results showed that MATLAB was inferior to TensorFlow in terms of learning speed. The application of the Optimization Toolbox MATLAB for the implementation of the L-BFGS quasi-Newtonian learning algorithm for physics-informed neural networks was studied. The quasi-Newtonian algorithm makes it possible to increase the accuracy of solving the problem, but requires a lot of training time. As further research, it is recommended to expand the capabilities of the Deep Learning Toolbox by including quasi-Newtonian learning algorithms, in particular, the Levenberg-Marquard algorithm, and new neural network architectures, for example, networks of radial basis functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
富婆嘉嘉子完成签到,获得积分10
3秒前
4秒前
Lysine发布了新的文献求助10
4秒前
4秒前
Lucas应助七七采纳,获得20
7秒前
慕青应助你好采纳,获得10
7秒前
勤qin完成签到 ,获得积分10
8秒前
科研狗发布了新的文献求助10
8秒前
8秒前
lly完成签到,获得积分10
10秒前
11秒前
美好雁丝发布了新的文献求助10
13秒前
阿苏完成签到 ,获得积分10
14秒前
14秒前
15秒前
陶醉的烤鸡完成签到 ,获得积分10
16秒前
独特的沛凝完成签到,获得积分10
17秒前
奋斗机器猫完成签到 ,获得积分10
20秒前
细心夏瑶完成签到,获得积分10
20秒前
21秒前
慕青应助流年采纳,获得20
22秒前
23秒前
CC完成签到 ,获得积分10
25秒前
25秒前
李爱国应助科研界星辰采纳,获得10
25秒前
25秒前
26秒前
27秒前
moon完成签到,获得积分20
27秒前
28秒前
徐小二发布了新的文献求助10
28秒前
SCI完成签到 ,获得积分10
29秒前
changping应助zh采纳,获得10
30秒前
MOF发布了新的文献求助10
31秒前
32秒前
33秒前
果冻呀发布了新的文献求助10
33秒前
33秒前
轻狂书生完成签到,获得积分10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511