Physics-Informed Neural Networks and their Implementation in MATLAB

MATLAB语言 人工神经网络 计算机科学 偏微分方程 人工智能 工具箱 算法 数学优化 数学 数学分析 操作系统 程序设计语言
作者
Mohie M. Alqezweeni,Vladimir Gorbachenko,Zoya A. Karmanova
标识
DOI:10.1109/iccitm56309.2022.10031685
摘要

An analysis was made of physics-informed neural networks used to solve partial differential equations. The prospects for the implementation of physics-informed neural networks in the MATLAB system are shown. An algorithm for solving partial differential equations in MATLAB using physics-informed neural networks has been developed. On the example of a model problem described by the Poisson equation, physics-informed neural networks were implemented and studied, which showed that MATLAB can be successfully used to implement such networks. MATLAB made it possible to solve the Poisson equation up to the mean square value of the loss function equal to 0.01. The best results were obtained by networks with a small number of layers (3–4) and a sufficiently large number of neurons in each layer (50–100). Comparison with known results showed that MATLAB was inferior to TensorFlow in terms of learning speed. The application of the Optimization Toolbox MATLAB for the implementation of the L-BFGS quasi-Newtonian learning algorithm for physics-informed neural networks was studied. The quasi-Newtonian algorithm makes it possible to increase the accuracy of solving the problem, but requires a lot of training time. As further research, it is recommended to expand the capabilities of the Deep Learning Toolbox by including quasi-Newtonian learning algorithms, in particular, the Levenberg-Marquard algorithm, and new neural network architectures, for example, networks of radial basis functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
坦率的匪应助科研通管家采纳,获得20
1秒前
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
要减肥完成签到,获得积分10
2秒前
happystar应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得30
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
2秒前
彭于晏应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
斯文败类应助袁圣炜采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
领导范儿应助ugk采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
happystar应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
无聊的万天完成签到,获得积分10
4秒前
4秒前
SHINING完成签到,获得积分20
5秒前
Lucas应助小刘采纳,获得10
5秒前
5秒前
要减肥发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614925
求助须知:如何正确求助?哪些是违规求助? 4018912
关于积分的说明 12440362
捐赠科研通 3701783
什么是DOI,文献DOI怎么找? 2041353
邀请新用户注册赠送积分活动 1074080
科研通“疑难数据库(出版商)”最低求助积分说明 957723