A multi-objective approach for reducing Patient’s inconvenience in a generalized home healthcare delivery setup

计算机科学 工作量 分类 数学优化 粒子群优化 医疗保健 运筹学 调度(生产过程) 整数规划 多目标优化 机器学习 算法 数学 经济增长 操作系统 经济
作者
Niteesh Yadav,Ajinkya Tanksale
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:219: 119657-119657
标识
DOI:10.1016/j.eswa.2023.119657
摘要

In this work, we present a mixed-integer programming model for a multi-objective home healthcare delivery problem. The proposed problem is modeled with minimum assumptions about the procedure attributes and can handle most of the commonly imposed restrictions in the field of home healthcare delivery. Under the imposed restrictions, the model is designed to provide selection (for caregivers and patients), assignment, scheduling, and routing decisions. In addition to some minor modifications in ‘workload balance’ constraints, a major focus of the work is to improve the quality of the schedule for the selected patients. To achieve this, we define and calculate the inconvenience caused by the unnecessarily scattered visits and their overlap with the patient-specific inconvenient time window. The model minimizes the total inconvenience cost for patients against the competitive goals of other stakeholders. Higher net profit, minimum loss of employed labor, balanced workload among staff, and maximization of fully served patients have been included as the other objectives. To solve the instances of the proposed home healthcare delivery problem, an efficient implementation for a reference point-based non-dominated sorting genetic algorithm (NSGA-III) is developed. After extensive parameter tuning using the Taguchi method of experimental design, the algorithm is used for generating a diverse set of non-dominated solutions for the decision-maker. In addition to the comparing the performance of NGSA-III with Multi-objective particle swarm optimization and Multi-objective grey wolf optimizer, experiments are also carried out to establish the relationship between patient convenience and net profit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllllee完成签到,获得积分10
1秒前
称心怀莲发布了新的文献求助10
1秒前
我是老大应助超帅的凌翠采纳,获得10
1秒前
自觉从筠完成签到 ,获得积分10
2秒前
佚名完成签到 ,获得积分10
3秒前
科研小白完成签到 ,获得积分10
4秒前
猕猴桃味的水果糖完成签到,获得积分10
4秒前
里已经完成签到,获得积分10
4秒前
haifang发布了新的文献求助10
4秒前
知性的绮兰完成签到,获得积分10
5秒前
5秒前
Ava应助顺利凡梦采纳,获得10
6秒前
红丽阿妹完成签到,获得积分10
7秒前
斯文冷亦完成签到 ,获得积分10
7秒前
lily完成签到,获得积分10
7秒前
8秒前
小太阳完成签到,获得积分10
8秒前
HalfGumps完成签到,获得积分10
8秒前
zzz完成签到 ,获得积分10
9秒前
9秒前
10秒前
LY完成签到,获得积分10
10秒前
diipgzfh发布了新的文献求助10
10秒前
烟花应助橘子郡女孩采纳,获得10
11秒前
12秒前
12秒前
songsong丿完成签到,获得积分10
12秒前
zzw发布了新的文献求助10
13秒前
薯条发布了新的文献求助10
14秒前
蛋白工人完成签到,获得积分10
14秒前
14秒前
多宝完成签到,获得积分10
14秒前
小蘑菇应助jiayaa采纳,获得10
15秒前
16秒前
默默的枫叶完成签到,获得积分10
16秒前
dada发布了新的文献求助10
17秒前
zhuzhu发布了新的文献求助10
17秒前
YXYWZMSZ完成签到,获得积分10
18秒前
jingjing-8995完成签到,获得积分10
18秒前
林林发布了新的文献求助10
18秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142960
求助须知:如何正确求助?哪些是违规求助? 2793911
关于积分的说明 7808759
捐赠科研通 2450220
什么是DOI,文献DOI怎么找? 1303729
科研通“疑难数据库(出版商)”最低求助积分说明 627055
版权声明 601356