Machine learning-based technique for predicting vendor incoterm (contract) in global omnichannel pharmaceutical supply chain

供应链 小贩 全渠道 供应链管理 计算机科学 业务 制药工业 产业组织 营销 医学 药理学
作者
Pankaj Kumar Detwal,Gunjan Soni,Suresh Kumar Jakhar,Deepak Srivastava,Jitendra Madaan,Yaşanur Kayıkçı
出处
期刊:Journal of Business Research [Elsevier]
卷期号:158: 113688-113688 被引量:15
标识
DOI:10.1016/j.jbusres.2023.113688
摘要

The importance of supply chain management to business operations and social growth cannot be overstated. Modern supply chains are considerably dissimilar from those of only a few years ago and are still evolving in a vastly competitive environment. Technology dealing with the rising complexity of dynamic supply chain processes is required. Robotics, machine learning, and rapid information dispensation can be supply chain transformation enablers. Quite a few functional supply chain applications based on Machine Learning (ML) have appeared in recent years; however, there has been minimal research on applications of data-driven techniques in pharmaceutical supply chains. This paper proposes a machine learning-based vendor incoterm (contract) selection model for direct drop-shipping in a global omnichannel pharmaceutical supply chain. The study also highlights the critical factors influencing the decision to select a vendor incoterm during the shipment of pharmaceutical goods. The findings of this study show that the proposed model can accurately predict a vendor incoterm (contract) for given values of input parameters. This comprehensive model will enable researchers and business administrators to undertake innovation initiatives better and redirect the resources regarding the direct drop shipping of pharmaceutical products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
阿元应助121231233采纳,获得10
3秒前
3秒前
4秒前
4秒前
GGbond完成签到,获得积分10
5秒前
抽烟不完成签到 ,获得积分10
5秒前
一路生花完成签到,获得积分10
6秒前
Rain_BJ完成签到,获得积分10
7秒前
7秒前
8秒前
10秒前
冰柠橙夏完成签到,获得积分10
11秒前
12秒前
12秒前
深情安青应助一路生花采纳,获得20
13秒前
隐形之玉发布了新的文献求助10
15秒前
16秒前
sheh发布了新的文献求助10
17秒前
南桑发布了新的文献求助10
17秒前
18秒前
酷炫小伙完成签到,获得积分10
18秒前
19秒前
微笑发布了新的文献求助20
19秒前
JamesPei应助啦啦啦采纳,获得10
21秒前
一十六发布了新的文献求助10
21秒前
领导范儿应助南桑采纳,获得10
21秒前
研友_Lw4Ngn发布了新的文献求助10
22秒前
24秒前
24秒前
24秒前
义气的一德完成签到,获得积分10
26秒前
浪漫的咸水鸭完成签到 ,获得积分10
27秒前
隐形曼青应助研友_Lw4Ngn采纳,获得10
27秒前
英俊的铭应助一十六采纳,获得10
29秒前
29秒前
cc发布了新的文献求助10
29秒前
31秒前
juziyaya应助lyjj023采纳,获得30
31秒前
一路生花发布了新的文献求助20
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141401
求助须知:如何正确求助?哪些是违规求助? 2792423
关于积分的说明 7802495
捐赠科研通 2448598
什么是DOI,文献DOI怎么找? 1302633
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237