马尔可夫毯
计算机科学
甲骨文公司
可扩展性
贝叶斯网络
约束(计算机辅助设计)
核(代数)
贝叶斯概率
理论计算机科学
人工智能
数据挖掘
机器学习
马尔可夫链
马尔可夫模型
数据库
程序设计语言
数学
马尔可夫性质
离散数学
几何学
作者
Jiaqi Si,Junyi Guo,Zhewen Hao,Wenyang He,Ruihan Li,Yueyang Pan,Zhenxin Fu,Chun‐An Fan
出处
期刊:IEEE Transactions on Parallel and Distributed Systems
[Institute of Electrical and Electronics Engineers]
日期:2022-09-19
卷期号:34 (6): 1720-1722
被引量:1
标识
DOI:10.1109/tpds.2022.3206099
摘要
Ankit Srivastava et al. (Srivastava et al. 2020) proposed a parallel framework for Constraint-Based Bayesian Network (BN) Learning via Markov Blanket Discovery (referred to as ramBLe) and implemented it over three existing BN learning algorithms, namely, GS, IAMB and Inter-IAMB. As part of the Student Cluster Competition at SC21, we reproduce the computational efficiency of ramBLe on our assigned Oracle cluster. The cluster has 4x36 cores in total with 100 Gbps RoCE v2 support and is equipped with CentOS-compatible Oracle Linux. Our experiments, covering the same three algorithms of the original ramBLe article (Srivastava et al. 2020), evaluate the strong and weak scalability of the algorithms using real COVID-19 data sets. We verify part of the conclusions from the original article and propose our explanation of the differences obtained in our results. Author: Please confirm or add details for any funding or financial support for the research of this article. ?>
科研通智能强力驱动
Strongly Powered by AbleSci AI