A transformer model for learning spatiotemporal contextual representation in fMRI data

计算机科学 人工智能 特征学习 代表(政治) 嵌入 机器学习 图形 数据挖掘 理论计算机科学 政治学 政治 法学
作者
Nima Asadi,Ingrid R. Olson,Zoran Obradović
出处
期刊:Network neuroscience [MIT Press]
卷期号:7 (1): 22-47 被引量:3
标识
DOI:10.1162/netn_a_00281
摘要

Representation learning is a core component in data-driven modeling of various complex phenomena. Learning a contextually informative representation can especially benefit the analysis of fMRI data because of the complexities and dynamic dependencies present in such datasets. In this work, we propose a framework based on transformer models to learn an embedding of the fMRI data by taking the spatiotemporal contextual information in the data into account. This approach takes the multivariate BOLD time series of the regions of the brain as well as their functional connectivity network simultaneously as the input to create a set of meaningful features that can in turn be used in various downstream tasks such as classification, feature extraction, and statistical analysis. The proposed spatiotemporal framework uses the attention mechanism as well as the graph convolution neural network to jointly inject the contextual information regarding the dynamics in time series data and their connectivity into the representation. We demonstrate the benefits of this framework by applying it to two resting-state fMRI datasets, and provide further discussion on various aspects and advantages of it over a number of other commonly adopted architectures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
orixero应助hhhm采纳,获得10
2秒前
从容芮应助zhangxuhns采纳,获得10
2秒前
3秒前
李燕君发布了新的文献求助10
3秒前
3秒前
贪玩的元彤发布了新的文献求助200
4秒前
白玉汤顿首完成签到,获得积分10
4秒前
名丿发布了新的文献求助10
4秒前
啦啦啦发布了新的文献求助10
4秒前
6秒前
6秒前
7秒前
草木发布了新的文献求助10
7秒前
曾经阁发布了新的文献求助10
8秒前
小二郎应助白张一个脑袋采纳,获得10
8秒前
JamesPei应助鲤鱼奇遇采纳,获得10
10秒前
深情安青应助隐形之玉采纳,获得10
11秒前
任性迎南完成签到,获得积分10
12秒前
英俊的铭应助怕黑月光采纳,获得10
13秒前
14秒前
15秒前
思源应助精神采纳,获得10
15秒前
hh完成签到,获得积分10
16秒前
淡淡火龙果关注了科研通微信公众号
17秒前
zhangxuhns完成签到,获得积分10
17秒前
WQ发布了新的文献求助10
17秒前
科研通AI2S应助Bodhicia采纳,获得10
17秒前
18秒前
18秒前
19秒前
19秒前
薰硝壤应助流星采纳,获得10
19秒前
鲤鱼奇遇完成签到 ,获得积分10
20秒前
buno完成签到,获得积分10
22秒前
一杯发布了新的文献求助10
22秒前
苹果采柳发布了新的文献求助10
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141401
求助须知:如何正确求助?哪些是违规求助? 2792423
关于积分的说明 7802495
捐赠科研通 2448598
什么是DOI,文献DOI怎么找? 1302633
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237