FusionFedBlock: Fusion of blockchain and federated learning to preserve privacy in industry 5.0

块链 计算机科学 联合学习 计算机安全 融合 人工智能 哲学 语言学
作者
Sushil Kumar Singh,Laurence T. Yang,Jong Hyuk Park
出处
期刊:Information Fusion [Elsevier]
卷期号:90: 233-240 被引量:59
标识
DOI:10.1016/j.inffus.2022.09.027
摘要

• Fusion of Blockchain and Federated Learning to Preserve Privacy in Industry 5.0. • Design federated learning network for privacy preserved data flow in an Industrial Environment. • Provide decentralized secure storage by the Distributed Hash Table (DHT) at the cloud. • Evaluate the proposed scheme with Blockchain and Federated Learning. • Comparison of our novel work with existing research as accuracy. Nowadays, Industries are experiencing rapid changes in the digital environment, referred to as Industry 5.0. The Internet of Things (IoT) and advanced technologies are essential in the industrial environment. Technological advancements can collect, transfer, and analyze vast amounts of data in the industry via promising technologies. Still, IoT has various issues when applied to industrial infrastructures, such as centralization, privacy preservation, latency, and security. This article proposes a scheme as FusionFedBlock: Fusion of Blockchain and Federated Learning to Preserve Privacy in Industry 5.0 to address the aforementioned issues. At the federated layer, the industry's departments (Production, Quality Control, Distribution) allow local learning updates with network automation and communicate to the global model, which miners verify in the Blockchain networks. Federated-Learning offers privacy preservation between various mentioned departments in industries. Decentralized secure storage is provided by the Distributed Hash Table (DHT) at the cloud layer. The validation outcomes of the proposed scheme demonstrate excellent performance as the accuracy of 93.5% in a 50% active node for Industry 5.0 compared to existing frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助文艺鞋垫采纳,获得10
1秒前
seeyou完成签到 ,获得积分10
2秒前
2秒前
Orange应助Morgen采纳,获得10
2秒前
4秒前
4秒前
5秒前
5秒前
mmm完成签到,获得积分10
5秒前
呼啦呼啦发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
LL发布了新的文献求助10
9秒前
胖胖完成签到 ,获得积分10
9秒前
liz发布了新的文献求助10
10秒前
开朗从安应助周shang采纳,获得10
11秒前
Lucas应助BK1BK22采纳,获得10
12秒前
mmm发布了新的文献求助10
12秒前
13秒前
忧郁绣连发布了新的文献求助10
13秒前
暮暮完成签到,获得积分10
14秒前
15秒前
16秒前
顺心尔阳发布了新的文献求助10
17秒前
可爱的电话完成签到,获得积分10
18秒前
19秒前
西红柿完成签到,获得积分0
19秒前
li完成签到,获得积分10
20秒前
zhouzhou完成签到 ,获得积分10
20秒前
12521发布了新的文献求助30
21秒前
复杂的方盒完成签到 ,获得积分10
22秒前
23秒前
草莓蛋糕发布了新的文献求助30
23秒前
顺心尔阳完成签到,获得积分10
24秒前
zxy完成签到,获得积分10
25秒前
26秒前
白瑾完成签到,获得积分10
26秒前
28秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137423
求助须知:如何正确求助?哪些是违规求助? 2788470
关于积分的说明 7786719
捐赠科研通 2444666
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625731
版权声明 601023