A graphics-based digital twin framework for computer vision-based post-earthquake structural inspection and evaluation using unmanned aerial vehicles

计算机科学 水准点(测量) 计算机图形学 绘图 地震模拟 代表(政治) 计算机图形学(图像) 结构工程 工程类 地质学 大地测量学 政治学 政治 法学
作者
Shuo Wang,Casey Rodgers,Guanghao Zhai,Thomas Ngare Matiki,Brian Welsh,Amirali Najafi,Jingjing Wang,Yasutaka Narazaki,Vedhus Hoskere,Billie F. Spencer
出处
期刊:Journal of infrastructure intelligence and resilience 卷期号:1 (1): 100003-100003
标识
DOI:10.1016/j.iintel.2022.100003
摘要

Rapid structural inspections and evaluations are critical after earthquakes. Computer vision-based methods have attracted the interest of researchers for their potential to be rapid, safe, and objective. To provide an end-to-end solution for computer vision-based post-earthquake inspection and evaluation of a specific as-built structure, the concepts of physics-based graphics model (PBGM) and digital twin (DT) are combined to develop a graphics-based digital twin (GBDT) framework. The GBDT framework comprises a finite element (FE) model and a computer graphics (CG) model whose state is informed by the FE analysis, representing the state of the structure before and after an earthquake. The CG model is first created making use of the FE model and the photographic survey of the structure, yielding the virtual counterpart of the as-built structure quickly and accurately. Then damage modelling approaches are proposed to predict the location and extent of structural and nonstructural damage under seismic loading, from which photographic representation of the predicted damage is realized in the CG model. The effectiveness of the GBDT framework is demonstrated using a five-story reinforced concrete benchmark building through the design and assessment of various UAV ( Unmanned Aerial Vehicle ) inspection trajectories for post-earthquake scenarios. The results demonstrate that the proposed GBDT framework has significant potential to enable rapid structural inspection and evaluation, ultimately leading to more efficient allocation of scarce resources in a post-earthquake setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
GXY发布了新的文献求助30
2秒前
Lucas应助专注秋尽采纳,获得10
2秒前
2秒前
754完成签到,获得积分10
2秒前
5秒前
学习猴发布了新的文献求助10
5秒前
充电宝应助炙热的如柏采纳,获得10
6秒前
所所应助qzaima采纳,获得10
6秒前
米兰达完成签到 ,获得积分0
7秒前
xg发布了新的文献求助10
9秒前
Loooong应助Ni采纳,获得10
10秒前
10秒前
WZ0904发布了新的文献求助10
10秒前
顾矜应助博ge采纳,获得10
12秒前
12秒前
Lotus发布了新的文献求助10
13秒前
14秒前
仁爱仙人掌完成签到,获得积分10
16秒前
ywang发布了新的文献求助10
16秒前
18秒前
18秒前
18秒前
ewqw关注了科研通微信公众号
19秒前
曦小蕊完成签到 ,获得积分10
19秒前
20秒前
21秒前
21秒前
奋斗灵波发布了新的文献求助10
21秒前
药学牛马发布了新的文献求助10
21秒前
21秒前
科研通AI5应助WZ0904采纳,获得10
22秒前
叶未晞yi发布了新的文献求助10
23秒前
ipeakkka发布了新的文献求助10
24秒前
Jzhang应助迷人的映雁采纳,获得10
24秒前
24秒前
zzz完成签到,获得积分10
25秒前
25秒前
小安发布了新的文献求助10
25秒前
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824