A graphics-based digital twin framework for computer vision-based post-earthquake structural inspection and evaluation using unmanned aerial vehicles

计算机科学 水准点(测量) 计算机图形学 绘图 地震模拟 代表(政治) 计算机图形学(图像) 结构工程 工程类 地质学 大地测量学 政治学 政治 法学
作者
Shuo Wang,Casey Rodgers,Guanghao Zhai,Thomas Ngare Matiki,Brian Welsh,Amirali Najafi,Jingjing Wang,Yasutaka Narazaki,Vedhus Hoskere,Billie F. Spencer
出处
期刊:Journal of infrastructure intelligence and resilience 卷期号:1 (1): 100003-100003
标识
DOI:10.1016/j.iintel.2022.100003
摘要

Rapid structural inspections and evaluations are critical after earthquakes. Computer vision-based methods have attracted the interest of researchers for their potential to be rapid, safe, and objective. To provide an end-to-end solution for computer vision-based post-earthquake inspection and evaluation of a specific as-built structure, the concepts of physics-based graphics model (PBGM) and digital twin (DT) are combined to develop a graphics-based digital twin (GBDT) framework. The GBDT framework comprises a finite element (FE) model and a computer graphics (CG) model whose state is informed by the FE analysis, representing the state of the structure before and after an earthquake. The CG model is first created making use of the FE model and the photographic survey of the structure, yielding the virtual counterpart of the as-built structure quickly and accurately. Then damage modelling approaches are proposed to predict the location and extent of structural and nonstructural damage under seismic loading, from which photographic representation of the predicted damage is realized in the CG model. The effectiveness of the GBDT framework is demonstrated using a five-story reinforced concrete benchmark building through the design and assessment of various UAV ( Unmanned Aerial Vehicle ) inspection trajectories for post-earthquake scenarios. The results demonstrate that the proposed GBDT framework has significant potential to enable rapid structural inspection and evaluation, ultimately leading to more efficient allocation of scarce resources in a post-earthquake setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
WuFen完成签到 ,获得积分10
2秒前
昊昊昊昊完成签到 ,获得积分20
2秒前
哇嘞完成签到 ,获得积分20
2秒前
HongJiang发布了新的文献求助10
2秒前
勇敢的小狗完成签到 ,获得积分10
3秒前
nt完成签到,获得积分10
3秒前
木鱼完成签到,获得积分20
5秒前
tifosi完成签到,获得积分10
5秒前
gyx完成签到 ,获得积分10
5秒前
传奇3应助半导体物理采纳,获得10
6秒前
zhuxiaonian完成签到,获得积分10
6秒前
tfdswmnvt发布了新的文献求助10
6秒前
6秒前
8秒前
yangxt-iga完成签到,获得积分10
8秒前
8秒前
10秒前
俭朴的绝施完成签到 ,获得积分20
10秒前
Bryce完成签到 ,获得积分10
12秒前
可爱的从寒完成签到,获得积分10
12秒前
李娜完成签到,获得积分10
12秒前
semiaa完成签到,获得积分10
12秒前
蓝桉完成签到,获得积分20
13秒前
13秒前
勤奋柜子完成签到,获得积分10
14秒前
王哒哒发布了新的文献求助10
14秒前
大模型应助Vivian采纳,获得10
14秒前
zhuzhu的江湖完成签到 ,获得积分10
14秒前
李健的小迷弟应助邢夏之采纳,获得10
14秒前
14秒前
15秒前
lyt完成签到,获得积分10
15秒前
蓝桉发布了新的文献求助10
16秒前
昵称完成签到,获得积分10
16秒前
一只狗东西完成签到,获得积分10
17秒前
poegtam完成签到,获得积分10
17秒前
肖的花园完成签到 ,获得积分10
17秒前
tfdswmnvt完成签到,获得积分10
17秒前
64658应助cc采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965984
求助须知:如何正确求助?哪些是违规求助? 3511325
关于积分的说明 11157405
捐赠科研通 3245882
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804286