石墨烯
材料科学
异质结
过渡金属
密度泛函理论
凝聚态物理
联轴节(管道)
金属
自旋轨道相互作用
Atom(片上系统)
耦合强度
自旋(空气动力学)
纳米技术
光电子学
物理
量子力学
热力学
化学
冶金
生物化学
计算机科学
嵌入式系统
催化作用
作者
Zahra Khatibi,Stephen R. Power
出处
期刊:Physical review
日期:2022-09-19
卷期号:106 (12)
被引量:5
标识
DOI:10.1103/physrevb.106.125417
摘要
The negligible intrinsic spin-orbit coupling (SOC) in graphene can be enhanced by proximity effects in stacked heterostructures of graphene and transition metal dichalcogenides (TMDCs). The composition of the TMDC layer plays a key role in determining the nature and strength of the resultant SOC induced in the graphene layer. Here, we study the evolution of the proximity--induced SOC as the TMDC layer is deliberately defected. Alloyed $\mathrm{G}/{\mathrm{W}}_{\ensuremath{\chi}}{\mathrm{Mo}}_{1\ensuremath{-}\ensuremath{\chi}}{\mathrm{Se}}_{2}$ heterostructures with diverse compositions ($\ensuremath{\chi}$) and defect distributions are simulated using density functional theory. Comparison with continuum and tight-binding models allows both local and global signatures of the metal-atom alloying to be clarified. Our findings show that, despite some dramatic perturbation of local parameters for individual defects, the low-energy spin and electronic behavior follow a simple effective medium model which depends only on the composition ratio of the metallic species in the TMDC layer. Furthermore, we demonstrate that the topological state of such alloyed systems can be feasibly tuned by controlling this ratio.
科研通智能强力驱动
Strongly Powered by AbleSci AI