A Stacked Generalization Model to Enhance Prediction of Earthquake-Induced Soil Liquefaction

液化 支持向量机 均方误差 多层感知器 标准差 计算机科学 标准贯入试验 土壤液化 地震振动台 数据挖掘 工程类 机器学习 岩土工程 数学 统计 人工神经网络
作者
K. R. Sri Preethaa,N. Yuvaraj,Arun Pandian Rathinakumar,Dong‐Eun Lee,Young Choi,Young-Jun Park,Chang‐Yong Yi
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (19): 7292-7292 被引量:5
标识
DOI:10.3390/s22197292
摘要

Earthquakes cause liquefaction, which disturbs the design phase during the building construction process. The potential of earthquake-induced liquefaction was estimated initially based on analytical and numerical methods. The conventional methods face problems in providing empirical formulations in the presence of uncertainties. Accordingly, machine learning (ML) algorithms were implemented to predict the liquefaction potential. Although the ML models perform well with the specific liquefaction dataset, they fail to produce accurate results when used on other datasets. This study proposes a stacked generalization model (SGM), constructed by aggregating algorithms with the best performances, such as the multilayer perceptron regressor (MLPR), support vector regression (SVR), and linear regressor, to build an efficient prediction model to estimate the potential of earthquake-induced liquefaction on settlements. The dataset from the Korean Geotechnical Information database system and the standard penetration test conducted on the 2016 Pohang earthquake in South Korea were used. The model performance was evaluated by using the R2 score, mean-square error (MSE), standard deviation, covariance, and root-MSE. Model validation was performed to compare the performance of the proposed SGM with SVR and MLPR models. The proposed SGM yielded the best performance compared with those of the other base models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
室内设计发布了新的文献求助10
2秒前
锅包肉爱吃肉完成签到 ,获得积分10
2秒前
居崽完成签到 ,获得积分10
2秒前
汉堡包应助yecheng采纳,获得10
3秒前
ZY发布了新的文献求助10
3秒前
feizhuliu完成签到,获得积分20
4秒前
4秒前
5秒前
JJ完成签到,获得积分10
6秒前
莫莉完成签到,获得积分10
6秒前
赘婿应助板凳采纳,获得10
8秒前
9秒前
粗心的胜完成签到,获得积分10
10秒前
杋困了完成签到 ,获得积分10
10秒前
egnaro完成签到,获得积分10
11秒前
11秒前
李驰完成签到 ,获得积分10
11秒前
叶子关注了科研通微信公众号
11秒前
12秒前
xixi完成签到 ,获得积分10
12秒前
婷婷子完成签到,获得积分10
13秒前
ding应助ly采纳,获得10
13秒前
13秒前
13秒前
英俊的铭应助曾经问玉采纳,获得10
14秒前
16秒前
16秒前
WYJie发布了新的文献求助10
16秒前
egnaro发布了新的文献求助10
17秒前
Jeffery426发布了新的文献求助200
17秒前
所所应助热心的诗蕊采纳,获得10
17秒前
我是老大应助ffchen111采纳,获得10
18秒前
tangz发布了新的文献求助10
18秒前
ira完成签到,获得积分10
19秒前
张雪敏完成签到,获得积分10
19秒前
脑洞疼应助邵老头采纳,获得10
19秒前
21秒前
kk发布了新的文献求助10
22秒前
沙砾完成签到,获得积分10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010128
求助须知:如何正确求助?哪些是违规求助? 3550139
关于积分的说明 11304931
捐赠科研通 3284614
什么是DOI,文献DOI怎么找? 1810733
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451