液化
支持向量机
均方误差
多层感知器
标准差
计算机科学
标准贯入试验
土壤液化
地震振动台
数据挖掘
工程类
机器学习
岩土工程
数学
统计
人工神经网络
作者
K. R. Sri Preethaa,N. Yuvaraj,Arun Pandian Rathinakumar,Dong‐Eun Lee,Young Choi,Young-Jun Park,Chang‐Yong Yi
出处
期刊:Sensors
[MDPI AG]
日期:2022-09-26
卷期号:22 (19): 7292-7292
被引量:5
摘要
Earthquakes cause liquefaction, which disturbs the design phase during the building construction process. The potential of earthquake-induced liquefaction was estimated initially based on analytical and numerical methods. The conventional methods face problems in providing empirical formulations in the presence of uncertainties. Accordingly, machine learning (ML) algorithms were implemented to predict the liquefaction potential. Although the ML models perform well with the specific liquefaction dataset, they fail to produce accurate results when used on other datasets. This study proposes a stacked generalization model (SGM), constructed by aggregating algorithms with the best performances, such as the multilayer perceptron regressor (MLPR), support vector regression (SVR), and linear regressor, to build an efficient prediction model to estimate the potential of earthquake-induced liquefaction on settlements. The dataset from the Korean Geotechnical Information database system and the standard penetration test conducted on the 2016 Pohang earthquake in South Korea were used. The model performance was evaluated by using the R2 score, mean-square error (MSE), standard deviation, covariance, and root-MSE. Model validation was performed to compare the performance of the proposed SGM with SVR and MLPR models. The proposed SGM yielded the best performance compared with those of the other base models.
科研通智能强力驱动
Strongly Powered by AbleSci AI