Benchmarking of Gaussian Process Regression with Multiple Random Fields for Spatial Variability Estimation

标杆管理 克里金 空间分析 随机场 自相关 统计 高斯过程 标准差 高斯随机场 组分(热力学) 空间变异性 随机效应模型 高斯分布 自方差 数学 物理 热力学 傅里叶变换 荟萃分析 内科学 数学分析 业务 医学 营销 量子力学
作者
Yukihisa Tomizawa,Ikumasa Yoshida
出处
期刊:ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering [American Society of Civil Engineers]
卷期号:8 (4) 被引量:6
标识
DOI:10.1061/ajrua6.0001277
摘要

Benchmarking is very valuable for evaluating and comparing methodologies. Here, Gaussian process regression using multiple Gaussian random fields (GPR-MR) is applied to benchmarking data for spatial variability problems. The benchmarking data used were from the literature and included four types of virtual ground models (VG1 to VG4) and one real ground measurement data set. The spatial variability of geological properties is often divided into a trend component and a random component. In GPR-MR, the trend component is expressed by a random field with a large scale of fluctuation (SOF), leading to a smooth (slow) variability, whereas the random component is expressed by one with a small SOF, leading to a rapidly changing variability. The SOF and the standard deviation of random fields were estimated using the maximum likelihood method based on the measured data provided in the benchmarking data. GPR-MR was used to estimate the spatial variabilities of all cases, and its performance was evaluated. For the real ground measured data, model selection was also performed with respect to the autocorrelation function of the random component in terms of information criteria, whereas the Markovian autocorrelation function was used for the virtual ground data without the model selection. Based on the results, the Whittle-Matérn (WM) model was selected for the random component. GPR-MR was used to estimate the spatial variability, and its performance with the WM model was evaluated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叼面包的数学狗完成签到 ,获得积分10
2秒前
2秒前
3秒前
橙子大王发布了新的文献求助10
3秒前
YY完成签到,获得积分10
3秒前
阿成发布了新的文献求助10
3秒前
3秒前
阿莲呐发布了新的文献求助20
3秒前
5秒前
JamesPei应助XXXX采纳,获得10
6秒前
7秒前
7秒前
坦率班完成签到 ,获得积分10
8秒前
星河发布了新的文献求助20
8秒前
七七完成签到,获得积分10
9秒前
10秒前
SLY完成签到 ,获得积分10
11秒前
11秒前
所所应助跳跳虎采纳,获得10
11秒前
wanci应助seedcode采纳,获得10
12秒前
我是老大应助完犊子采纳,获得10
12秒前
Kevin发布了新的文献求助30
12秒前
13秒前
14秒前
灰灰灰完成签到,获得积分10
16秒前
牛牛眉目发布了新的文献求助10
16秒前
18秒前
哈哈哈完成签到,获得积分10
18秒前
七七发布了新的文献求助10
20秒前
22秒前
研友_nPb9e8完成签到,获得积分10
23秒前
科研通AI2S应助satan9采纳,获得10
24秒前
24秒前
badyoungboy完成签到,获得积分10
24秒前
邵晓啸发布了新的文献求助20
25秒前
星河完成签到,获得积分10
27秒前
追梦少年完成签到,获得积分10
28秒前
28秒前
tamo完成签到,获得积分10
29秒前
seedcode发布了新的文献求助10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388