Aero-engine gas path system health assessment based on depth digital twin

航空发动机 断层(地质) 工程类 可靠性(半导体) 路径(计算) 计算机科学 人工神经网络 模式(计算机接口) 预言 可靠性工程 人工智能 机械工程 量子力学 操作系统 物理 地质学 功率(物理) 地震学 程序设计语言
作者
Liang Zhou,Huawei Wang,Shanshan Xu
出处
期刊:Engineering Failure Analysis [Elsevier]
卷期号:142: 106790-106790 被引量:33
标识
DOI:10.1016/j.engfailanal.2022.106790
摘要

Aero-engine health assessment is of great significance for accurately understanding the health status of aircraft, supporting maintenance decision-making and ensuring flight safety. However, aero-engine has the characteristics of complex structure, fault coupling and state nonlinearity, coupled with the constraints of many factors such as acquisition means, analysis methods and the limitation of abnormal data. It is difficult to obtain a mapping relationship that fully characterizes its operating status through monitoring information. Therefore, this paper proposes a health assessment method based on depth digital twin, which can be used for real-time monitoring of aero-engine operation state. Firstly, the mechanism model is constructed for the multi-scale simulation of aero-engine gas path system. Combined with the advantages of dynamic learning and self-optimization of deep learning method, the data-driven model for data prediction is constructed, and the two are fused to realize the depth digital twin of aero-engine. Then, the digital twin model is used to simulate the high-dimensional monitoring data generated during the operation of aero-engine. Finally, a multi-scale one-dimensional convolution neural network model (MultiScale1DCNN) is proposed to analyze the simulated data, so as to assess the real-time health status of aero-engine. Through the simulation test of aero-engine sensor data, it is verified that the digital twin model has high reliability. Compared with the traditional simulation model, it has higher accuracy. In the aero-engine health assessment tests, the MultiScale1DCNN model can accurately identify the failure mode and assess the failure level, and has high assessment accuracy. In several assessment tests, the assessment accuracy rate is above 96%. The test results show that the health assessment method can accurately reflect the health status of aero-engine, and has certain real-time performance, which shows that it has high engineering application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伤逝完成签到 ,获得积分10
1秒前
1秒前
2秒前
orixero应助pihriyyy采纳,获得10
3秒前
HUM完成签到,获得积分20
3秒前
4秒前
共享精神应助MaoSen采纳,获得10
5秒前
栀初完成签到,获得积分10
5秒前
爆米花应助格格巫采纳,获得10
5秒前
wanci应助格格巫采纳,获得10
6秒前
桐桐应助ling采纳,获得10
6秒前
ldgsd发布了新的文献求助10
6秒前
Fxhy完成签到,获得积分10
7秒前
HUM发布了新的文献求助10
7秒前
InfiniteLulu完成签到,获得积分10
7秒前
Lighters完成签到 ,获得积分10
9秒前
xxvvxx发布了新的文献求助10
9秒前
同志同志完成签到,获得积分10
9秒前
13秒前
小点点完成签到,获得积分10
14秒前
14秒前
沉默的盼夏完成签到,获得积分10
16秒前
17秒前
yuzhi完成签到,获得积分10
17秒前
彭于晏应助想飞的猪采纳,获得10
18秒前
格格巫发布了新的文献求助10
19秒前
20秒前
搜集达人应助无辜的垣采纳,获得10
20秒前
Hello应助哆啦的空间站采纳,获得10
20秒前
无情的瑾瑜完成签到,获得积分10
21秒前
21秒前
Dolbar发布了新的文献求助10
22秒前
mmm完成签到,获得积分10
25秒前
ling发布了新的文献求助10
26秒前
26秒前
26秒前
望江饮月完成签到,获得积分10
27秒前
27秒前
CNJX完成签到,获得积分10
27秒前
rachel03发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296623
求助须知:如何正确求助?哪些是违规求助? 4445778
关于积分的说明 13837294
捐赠科研通 4330749
什么是DOI,文献DOI怎么找? 2377237
邀请新用户注册赠送积分活动 1372556
关于科研通互助平台的介绍 1337990