Aero-engine gas path system health assessment based on depth digital twin

航空发动机 断层(地质) 工程类 可靠性(半导体) 路径(计算) 计算机科学 人工神经网络 模式(计算机接口) 预言 可靠性工程 人工智能 机械工程 量子力学 操作系统 物理 地质学 功率(物理) 地震学 程序设计语言
作者
Liang Zhou,Huawei Wang,Shanshan Xu
出处
期刊:Engineering Failure Analysis [Elsevier BV]
卷期号:142: 106790-106790 被引量:8
标识
DOI:10.1016/j.engfailanal.2022.106790
摘要

Aero-engine health assessment is of great significance for accurately understanding the health status of aircraft, supporting maintenance decision-making and ensuring flight safety. However, aero-engine has the characteristics of complex structure, fault coupling and state nonlinearity, coupled with the constraints of many factors such as acquisition means, analysis methods and the limitation of abnormal data. It is difficult to obtain a mapping relationship that fully characterizes its operating status through monitoring information. Therefore, this paper proposes a health assessment method based on depth digital twin, which can be used for real-time monitoring of aero-engine operation state. Firstly, the mechanism model is constructed for the multi-scale simulation of aero-engine gas path system. Combined with the advantages of dynamic learning and self-optimization of deep learning method, the data-driven model for data prediction is constructed, and the two are fused to realize the depth digital twin of aero-engine. Then, the digital twin model is used to simulate the high-dimensional monitoring data generated during the operation of aero-engine. Finally, a multi-scale one-dimensional convolution neural network model (MultiScale1DCNN) is proposed to analyze the simulated data, so as to assess the real-time health status of aero-engine. Through the simulation test of aero-engine sensor data, it is verified that the digital twin model has high reliability. Compared with the traditional simulation model, it has higher accuracy. In the aero-engine health assessment tests, the MultiScale1DCNN model can accurately identify the failure mode and assess the failure level, and has high assessment accuracy. In several assessment tests, the assessment accuracy rate is above 96%. The test results show that the health assessment method can accurately reflect the health status of aero-engine, and has certain real-time performance, which shows that it has high engineering application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助Star1983采纳,获得10
1秒前
杨振发布了新的文献求助10
1秒前
曾建发布了新的文献求助10
1秒前
Ode发布了新的文献求助10
1秒前
Jole完成签到,获得积分10
2秒前
深情安青应助梨理栗采纳,获得10
2秒前
callmecjh完成签到,获得积分10
3秒前
3秒前
4秒前
嘟嘟嘟嘟完成签到 ,获得积分10
4秒前
略略略完成签到,获得积分20
7秒前
清风发布了新的文献求助10
9秒前
10秒前
迷人素发布了新的文献求助30
10秒前
11秒前
momomo应助xx采纳,获得10
12秒前
冷酷太清完成签到,获得积分10
13秒前
等待的金毛完成签到,获得积分10
13秒前
有魅力乌完成签到,获得积分10
13秒前
13秒前
14秒前
共享精神应助舒淇采纳,获得30
15秒前
16秒前
水清木华发布了新的文献求助40
16秒前
17秒前
17秒前
充电宝应助谦让含玉采纳,获得10
17秒前
18秒前
Jole发布了新的文献求助10
18秒前
NexusExplorer应助迷人素采纳,获得30
19秒前
夏傥完成签到,获得积分10
20秒前
21秒前
OSMSO发布了新的文献求助10
21秒前
木木发布了新的文献求助10
21秒前
21秒前
林三一发布了新的文献求助10
22秒前
sys完成签到,获得积分10
22秒前
23秒前
ALDRC完成签到,获得积分10
24秒前
完美世界应助活力的语堂采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991995
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260801
捐赠科研通 3272413
什么是DOI,文献DOI怎么找? 1805820
邀请新用户注册赠送积分活动 882665
科研通“疑难数据库(出版商)”最低求助积分说明 809425