Aero-engine gas path system health assessment based on depth digital twin

航空发动机 断层(地质) 工程类 可靠性(半导体) 路径(计算) 计算机科学 人工神经网络 模式(计算机接口) 预言 可靠性工程 人工智能 机械工程 量子力学 操作系统 物理 地质学 功率(物理) 地震学 程序设计语言
作者
Liang Zhou,Huawei Wang,Shanshan Xu
出处
期刊:Engineering Failure Analysis [Elsevier BV]
卷期号:142: 106790-106790 被引量:33
标识
DOI:10.1016/j.engfailanal.2022.106790
摘要

Aero-engine health assessment is of great significance for accurately understanding the health status of aircraft, supporting maintenance decision-making and ensuring flight safety. However, aero-engine has the characteristics of complex structure, fault coupling and state nonlinearity, coupled with the constraints of many factors such as acquisition means, analysis methods and the limitation of abnormal data. It is difficult to obtain a mapping relationship that fully characterizes its operating status through monitoring information. Therefore, this paper proposes a health assessment method based on depth digital twin, which can be used for real-time monitoring of aero-engine operation state. Firstly, the mechanism model is constructed for the multi-scale simulation of aero-engine gas path system. Combined with the advantages of dynamic learning and self-optimization of deep learning method, the data-driven model for data prediction is constructed, and the two are fused to realize the depth digital twin of aero-engine. Then, the digital twin model is used to simulate the high-dimensional monitoring data generated during the operation of aero-engine. Finally, a multi-scale one-dimensional convolution neural network model (MultiScale1DCNN) is proposed to analyze the simulated data, so as to assess the real-time health status of aero-engine. Through the simulation test of aero-engine sensor data, it is verified that the digital twin model has high reliability. Compared with the traditional simulation model, it has higher accuracy. In the aero-engine health assessment tests, the MultiScale1DCNN model can accurately identify the failure mode and assess the failure level, and has high assessment accuracy. In several assessment tests, the assessment accuracy rate is above 96%. The test results show that the health assessment method can accurately reflect the health status of aero-engine, and has certain real-time performance, which shows that it has high engineering application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助111采纳,获得10
刚刚
浮游应助汎影采纳,获得10
刚刚
1秒前
麦客完成签到,获得积分10
1秒前
慕青应助噜啦啦采纳,获得10
1秒前
充电宝应助i7采纳,获得10
2秒前
科研通AI6应助精明若风采纳,获得10
2秒前
4秒前
能干的人完成签到,获得积分10
4秒前
okkk完成签到,获得积分10
5秒前
mei发布了新的文献求助10
5秒前
我是老大应助cc采纳,获得10
5秒前
6秒前
精明幻悲完成签到,获得积分10
6秒前
科目三应助Sun采纳,获得30
7秒前
魏深么发布了新的文献求助10
7秒前
万能图书馆应助iris采纳,获得10
7秒前
感动的半烟完成签到,获得积分10
8秒前
迷路的迎南完成签到,获得积分10
8秒前
嗯嗯应助何以载道采纳,获得10
8秒前
zhenliu完成签到,获得积分10
9秒前
海绵君发布了新的文献求助10
10秒前
11秒前
打打应助汎影采纳,获得10
11秒前
11秒前
12秒前
13秒前
qwewyq12307完成签到,获得积分10
13秒前
醉熏的黄豆完成签到,获得积分20
14秒前
zhenliu发布了新的文献求助80
14秒前
桔子完成签到,获得积分10
14秒前
科研通AI5应助明理采珊采纳,获得10
14秒前
NexusExplorer应助高大笙采纳,获得10
14秒前
14秒前
袁梦发布了新的文献求助50
15秒前
w。完成签到 ,获得积分10
15秒前
ningwu完成签到,获得积分10
16秒前
CodeCraft应助cc采纳,获得10
16秒前
华仔应助科研小虫采纳,获得10
16秒前
小鱼儿发布了新的文献求助10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132036
求助须知:如何正确求助?哪些是违规求助? 4333560
关于积分的说明 13501173
捐赠科研通 4170621
什么是DOI,文献DOI怎么找? 2286445
邀请新用户注册赠送积分活动 1287303
关于科研通互助平台的介绍 1228340