Aero-engine gas path system health assessment based on depth digital twin

航空发动机 断层(地质) 工程类 可靠性(半导体) 路径(计算) 计算机科学 人工神经网络 模式(计算机接口) 预言 可靠性工程 人工智能 机械工程 量子力学 操作系统 物理 地质学 功率(物理) 地震学 程序设计语言
作者
Liang Zhou,Huawei Wang,Shanshan Xu
出处
期刊:Engineering Failure Analysis [Elsevier]
卷期号:142: 106790-106790 被引量:8
标识
DOI:10.1016/j.engfailanal.2022.106790
摘要

Aero-engine health assessment is of great significance for accurately understanding the health status of aircraft, supporting maintenance decision-making and ensuring flight safety. However, aero-engine has the characteristics of complex structure, fault coupling and state nonlinearity, coupled with the constraints of many factors such as acquisition means, analysis methods and the limitation of abnormal data. It is difficult to obtain a mapping relationship that fully characterizes its operating status through monitoring information. Therefore, this paper proposes a health assessment method based on depth digital twin, which can be used for real-time monitoring of aero-engine operation state. Firstly, the mechanism model is constructed for the multi-scale simulation of aero-engine gas path system. Combined with the advantages of dynamic learning and self-optimization of deep learning method, the data-driven model for data prediction is constructed, and the two are fused to realize the depth digital twin of aero-engine. Then, the digital twin model is used to simulate the high-dimensional monitoring data generated during the operation of aero-engine. Finally, a multi-scale one-dimensional convolution neural network model (MultiScale1DCNN) is proposed to analyze the simulated data, so as to assess the real-time health status of aero-engine. Through the simulation test of aero-engine sensor data, it is verified that the digital twin model has high reliability. Compared with the traditional simulation model, it has higher accuracy. In the aero-engine health assessment tests, the MultiScale1DCNN model can accurately identify the failure mode and assess the failure level, and has high assessment accuracy. In several assessment tests, the assessment accuracy rate is above 96%. The test results show that the health assessment method can accurately reflect the health status of aero-engine, and has certain real-time performance, which shows that it has high engineering application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿郎二号完成签到,获得积分20
刚刚
酱酱发布了新的文献求助10
1秒前
1秒前
八宝粥我爱喝完成签到 ,获得积分10
1秒前
快递乱跑完成签到 ,获得积分10
1秒前
hinelson完成签到 ,获得积分10
2秒前
喜悦浩天完成签到,获得积分10
2秒前
huangyanan0120完成签到,获得积分10
3秒前
所所应助xiao晓采纳,获得10
3秒前
勤恳雅香完成签到,获得积分20
3秒前
xzx完成签到,获得积分10
3秒前
dou发布了新的文献求助10
4秒前
4秒前
吃的完成签到,获得积分10
4秒前
4秒前
舒先生完成签到,获得积分10
4秒前
阿郎二号发布了新的文献求助30
4秒前
一元发布了新的文献求助10
4秒前
neullt完成签到,获得积分10
6秒前
6秒前
追寻紫安完成签到,获得积分10
6秒前
郭郭完成签到 ,获得积分10
6秒前
7秒前
酷波er应助青青草原图图采纳,获得10
7秒前
Pretrial完成签到 ,获得积分10
7秒前
cc20231022完成签到,获得积分10
7秒前
在水一方应助帮帮我好吗采纳,获得10
8秒前
8秒前
一条小鱼完成签到 ,获得积分10
8秒前
领导范儿应助yzyzzyzz51采纳,获得10
8秒前
Jaaay完成签到,获得积分10
9秒前
炸鸡发布了新的文献求助10
9秒前
缓慢冥幽发布了新的文献求助10
9秒前
要减肥的砖头完成签到,获得积分10
10秒前
斯文钢笔完成签到 ,获得积分10
10秒前
苗松发布了新的文献求助10
11秒前
sunshine发布了新的文献求助10
11秒前
陶ni吉吉完成签到,获得积分10
12秒前
阿冰应助睡着了采纳,获得10
12秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180222
求助须知:如何正确求助?哪些是违规求助? 2830617
关于积分的说明 7979310
捐赠科研通 2492194
什么是DOI,文献DOI怎么找? 1329251
科研通“疑难数据库(出版商)”最低求助积分说明 635720
版权声明 602954