清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predictions of macroscopic mechanical properties and microscopic cracks of unidirectional fibre-reinforced polymer composites using deep neural network (DNN)

材料科学 复合材料 体积分数 代表性基本卷 纤维增强塑料 人工神经网络 横截面 半径 结构工程 微观结构 计算机科学 人工智能 工程类 计算机安全
作者
Xiaoxuan Ding,Xiaonan Hou,Min Xia,Yaser Ismail,Jianqiao Ye
出处
期刊:Composite Structures [Elsevier]
卷期号:302: 116248-116248 被引量:18
标识
DOI:10.1016/j.compstruct.2022.116248
摘要

Fibre-reinforced polymer (FRP) composites have been widely used in different engineering sectors due to their excellent physical and mechanical properties. Therefore, fast, convenient and accurate prediction tools for both macroscopic mechanical properties and failure of the composites are highly demanded by industry and interested by academia. In this study, two back-propagation deep neural network (DNN) models are developed. The first model is a regression model for predicting macroscopic transverse mechanical properties of FRP laminae, which is based on a data set generated by Discrete Element Method (DEM) simulations of 2000 Representative Volume Element (RVE) with 200 different sets of fibre volume fractions and fibre radii. The second model, which is a classification model based on the results of 1600 DEM simulations of RVEs with a fixed 45 % fibre volume fraction and 3.3μm fibre radius, is developed for predicting microscopic crack patterns of the FRP laminae. The results show that the two developed DNN models are able to predict both the macroscopic transverse mechanical properties and the microscopic cracks of the RVE accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默孱完成签到 ,获得积分10
7秒前
10秒前
14秒前
24秒前
28秒前
CSun完成签到,获得积分10
39秒前
40秒前
42秒前
CSun发布了新的文献求助10
45秒前
1分钟前
1分钟前
1分钟前
vitamin完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
陈媛发布了新的文献求助10
1分钟前
Jasper应助陈媛采纳,获得10
1分钟前
1分钟前
jasmine完成签到,获得积分10
1分钟前
2分钟前
uikymh完成签到 ,获得积分0
2分钟前
2分钟前
Artin完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
胖头鱼please完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Lorin完成签到 ,获得积分10
4分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139610
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795348
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176